
1. Ant odometer (150 million B.C.):  

                                                                                                             

2.  Primate count (30 Million B.C.) 

 

3. Cicada generated primes numbers (1 million B.C.) 

                                                                                                                   

  

 

 

Saharan desert ants may have built in “pedometers” 
that count steps and allow the ants to measure exact 
distances. Ants with stilts glue to their legs travel too 
far and pass their nest entrance, suggesting that sterile 
length is important for distance determination. 

 

 

Around 60 million years ago, small, lemur-like primates 
had evolved 30 millions areas of the world, and 30 million 
years ago, primates with monkeylike characteristics existed. 
Primates appear to have some sense of numbers, and the 
higher primates can be taught to identify numbers from 1 
to 6 by processing the appropriate computer key when 
shown a certain number of objects. 

Cicadas are winged insects that evolved around 1.8 
million years ago during the Pleistocene epoch. Cicadas 
of the genus Magicicada spend most of their lives below 
the ground, feeding on the juices of plant roots, and then 
emerge, mate, and die quickly. These creatures display a 
startling behavior: Their emergence is synchronized with 
periods of years that are usually the prime numbers 13 
and 17. This research is still in its infancy and many 
questions remain. What is special about 13 and 17? What 
predators or parasites have actually existed to drive the 
cicadas to these periods? 
 



4. Knots (100,000 B.C.) 

 

5. Ishango Bone (18,000 B.C.) 

                                                                                     

 

6. Quipu (3000 B.C.) 

                                                                                                  

 

The quintessence of ornamental knots is exemplified in the book 
of Kells, an ornately illustrated Gospel Bible, produced by Celtic 
monks in about A.D.800. In modern times, the study of knots, 
such as the trefoil knot with the 3 crossings, is part of a vast 
branch of mathematics dealing with closed twisted loops. In 
1914, German mathematician Max Delm (1878-1952) showed 
that the trefoil knots mirror images are not equivalent. For 
centuries, mathematicians have tried to develop ways to 
distinguish tangles that look like knots (called unknots) from true 
knots and to distinguish true knots from one another. Today, 
knot theory in mathematics has become so advanced that mere 
mortals find it challenging to understand its most profound 
applications. 
 

The Ishango baboon bone (found in Ishango, near 
the headwaters of the Nile River), with its 
sequence of notches, was first thought to be a 
simple tally stick used by a Stone Age African. 
These bones suggest a simple understanding of 
doubling or halving. However, some scientist 
believes that the marks suggest a mathematical 
prowess that goes beyond counting of objects. The 
full mystery of Ishango bone can’t be solved until 
other similar bones are discovered. 

 

The ancient Incas of South America used quipus 
(pronounced "key-poos"), memory banks made of strings 
and knots for storing numbers made of knotted strings to 
store numbers. Knots types and positions, cord direction, 
cord level and colors often represented dates and counts 
of people and objects. The quipus may have contained 
more information such as construction plans, dance 
patterns, and even aspects of Inca history. The quipu is 
significant because it dispels the notion that mathematics 
flourishes only after a civilization has developed writing. 
 
 
 
 
 
 
 
 
 



7. Dice (3000 B.C.)  

                                                                                      

8. Magic square (2200 B.C.) 

                                                                                  

9. Plimpton 322 (1800 B.C.) 

                                                                                     

 

                                                                                                                                                                                                                                                                 

Dice was originally made from the anklebones of 
animals and the oldest known dice was found in 
the southeastern Iran. Dice was among the 
earliest means for producing random numbers. 
And now a days it used for finding probability also.  
In ancient civilizations, people used dice to predict 
the future, believing that the Gods influenced dice 
outcomes. 

 

 

Magic squares originated in China and were first mentioned 
in a manuscript from the time of Emperor Yu. A magic square 
consists of N2 boxes, called Cells, filled with integers that are 
all different. The sum of the numbers in the horizontal rows, 
vertical columns and diagonals are equal. Indian 
mathematician Shrinivas Ramanujan’s magic square is a well 
known example. 

 

Plimpton 322(It named after a New York publisher 
George Plimpton who, in 1922, bought the tablet for 
$10 from a dealer and then donated it to a Columbian 
University) refers to a mysterious Babylonian clay 
tablet featuring numbers in a cuneiform script in a 
table of 4 columns and 15 rows. The tables specify the 
Pythagorean triples- i.e., whole numbers that specify 
the Pythagorean Theorem and the 4th column in the 
table simply contain the row number. 

 



10. Rhind Papyrus (1650 B.C.) 

 

11. Tic Tac Toe (TTT) (1300 B.C.) 

                                                                                      

12. Pythagorean triangle & theorem (800 B.C) 

                                                                    

 

 

 

 

The rhind papyrus is the most important source of 
information concerning ancient Egyptian mathematics. 
This scroll, about a foot of 30 cm high and 18 feet (5.5 
m) long was found in a tomb in Thebes on the east 
bank of the river Nile. It includes mathematical 
problems involving fractions, A.P., algebra, geometry 
and accounting. 

 

 

T.T.T. is among humanity’s best known & most 
ancient games. This game was first played in 
Egypt. For TTT,2 players 0 & X, take turn making 
their symbols in the spaces of a 3x3 grid. The 
player who first places 3 of his own marks in a 
horizontal, vertical or diagonal row wins. 

 
 

Pythagorean triangles were probably known even earlier 
as “Babylonians”. Although Pythagoras is often credited 
with the formulation of the Pythagorean Theorem in about 
580 B.C. but evidence suggest that theorem was 
developed by Hindu mathematician Baudhayan in about 
800B.C. in his book Baudhayana sulba sutra. It states that 
the square of hypotenuse length is equal to the sum of the 
square of other two lengths in a right angle triangle. 

 



13. Go Game (548 B.C.)  

                                                                                                                    

 

14. Mathematical brotherhood [Pythagoras] (530 BC) 

 

15. Zeno's Paradoxes (445 B.C.) 

 

                                                                                                              

Go is a 2 player’s game, the 2 players that originated in China 
around 2000 B.C., alternatively place black & white stones on 
the intersections of a 19x19 playing board. A stone or a group of 
stones is captured & removed if it is tightly surrounded by the 
stones of opposite color. The objective is to control a larger 
territory that’s one opponent. Go is complex, due in part to the 
larger game board, complicated strategies & huge numbers of 
variations in possible game. 

Chess  is a smaller version of Go Game 

Pythagoras moved to Croton, Italy, to teach 
mathematics, music & reincarnation. He observed that 
vibrating strings produce harmonious sounds when the 
ratios of the length of the strings are whole numbers. 
He also studied triangular numbers (based on the 
patterns of the dots in a triangular shape) and perfect 
numbers (integers that are the sum of their proper 
positive divisors)  

 

Greek philosopher Zeno invented a set of four paradoxes dealing with 
counterintuitive aspects of continuous space and time. 

1. Dichotomy paradox: Before an object can travel a given distance d, it must 
travel a distance d/2. In order to travel d/2, it must travel d/4, etc. Since this 
sequence goes on forever, it therefore appears that the distance d cannot be 
traveled. The resolution of the paradox awaited calculus and the proof that infinite 
geometric series such as  sum_(i=1)^(infinity)(1/2)^i=1 can converge, so that the 
infinite number of "half-steps" needed is balanced by the increasingly short 
amount of time needed to traverse the distances. 

2. Achilles and the tortoise paradox: A fleet-of-foot Achilles is unable to catch a 
plodding tortoise which has been given a head start, since during the time it takes 
Achilles to catch up to a given position, the tortoise has moved forward some 
distance. But this is obviously fallacious since Achilles will clearly pass the tortoise! 
The resolution is similar to that of the dichotomy paradox.  
i.e.1=1/2+1/4+1/8+1/16+1/32+⋯ 

 



                                                                                                   
16. Quadrature of lune(460 B.C.) 

 

 

 

 

 

17. Platonic solids (350 B.C.) 

                                                                                                      

3. Arrow paradox: An arrow in flight has an 
instantaneous position at a given instant of time. At that 
instant, however, it is indistinguishable from a motion -
less arrow in the same position, so how is the motion of 
the arrow perceived? 

4. Stade paradox: A paradox arising from the 
assumption that space and time can be divided only by a 
definite amount. 

 

Hippocrates of Chaos demonstrated that the moon-shaped areas 
between circular arcs, known as lunes, could be expressed exactly as a 
rectilinear area, or quadrature.  
Hippocrates managed to square several sorts of lunes, some on lunes, 
some on arcs greater and less than semicircles and he intimated, 
though he may not have believed, that his method could square an 
entire circle. At the end of the classical age, Boethius (c. AD 470–524), 
who Latin translations of snippets of Euclid  mentioned that someone 
had accomplished the squaring of the circle. Whether the unknown 
genius used lunes or some other method is not known, since for lack of 
space Boethius did not give the demonstration. He thus transmitted 
the challenge of the quadrature of the circle together with fragments 
of geometry apparently useful in performing it. Europeans kept at the 
hapless task well into the Enlightenment. Finally, in 1775, the Paris 
Academy of Sciences, fed up with the task of spotting the fallacies in 
the many solutions submitted to it, refused to have anything further to 
do with circle square’s. 

 

Plato described the five Platonic solids in Timaeus in around 350 
B.C. A Platonic solid is a convex multifaceted 3-D object whose 
faces are all identical polygons, with sides of equal length and 
angles of equal degrees. A Platonic solid also has the same 
number of faces meeting at every vertex. The best-known 
example of a Platonic solid is the cube, whose faces are six 
identical squares. The ancient Greeks recognized and proved that 
only five Platonic solids can be constructed: the tetrahedron, 
cube, octahedron, dodecahedron, and icosahedron. For example, 
the icosahedron has 20 faces, all in the shape of equilateral 
triangles 

http://www.britannica.com/EBchecked/media/57042/Quadrature-of-the-lune
http://www.britannica.com/EBchecked/topic/485902/quadrature
http://www.britannica.com/EBchecked/topic/71328/Anicius-Manlius-Severinus-Boethius
http://www.britannica.com/EBchecked/topic/561721/squaring-the-circle


18. Aristotle’s organons (350B.C.) 

 

19. Aristotle's wheel paradox (350 B.C.) 

                                                                                                       

 

 

                                                                      

 

 

 

 

 

 

 

 

Aristotle wrote six works that were later grouped together as 
the Organon, which means “instrument.” These works are the Prior 
Analytics, Posterior Analytics, On Interpretation, Topics, Sophistical 
Refutations, and Categories. These texts are considered the body of 
Aristotle’s work on logic, though there is a great deal in 
the Organon that we would not consider logic, and many of Aristotle’s 
other works, most notably the Metaphysics, deal to some extent with 
logic. These six works have a common interest not primarily in saying 
what is true but in investigating the structure of truth and the structure 
of the things that we can say such that they can be true. Broadly 
speaking, the Organon provides a series of guidelines on how to make 
sense of things. 
 

Aristotle's wheel paradox is a paradox from the Greek work 
Mechanica traditionally attributed to Aristotle. There are two 
wheels, one within the other, whose rims take the shape of 
two circles with different diameters. The wheels roll without 
slipping for a full revolution. The paths traced by the bottoms 
of the wheels are straight lines, which are apparently the 
wheels' circumferences. But the two lines have the same 
length, so the wheels must have the same circumference, 
contradicting the assumption that they have different sizes: a 
paradox. 

The fallacy is the assumption that the smaller wheel indeed traces out its circumference, without 
ensuring that it, too, rolls without slipping on a fixed surface. In fact, it is impossible for both 
wheels to perform such motion. Physically, if two joined concentric wheels with different radii 
were rolled along parallel lines then at least one would slip; if a system of cogs were used to 
prevent slippage then the wheels would jam. A modern approximation of such an experiment is 
often performed by car drivers who park too close to a curb. The car's outer tire rolls without 
slipping on the road surface while the inner hubcap both rolls and slips across the curb; the 
slipping is evidenced by a screeching noise. 
Alternatively, the fallacy is the assumption that the smaller wheel is independent of the larger 
wheel. Imagine a tire as the larger wheel, and imagine the smaller wheel as the interior 
circumference of the tire and not as the rim. The movement of the inner circle is dependent on 
the larger circle. Thus its movement from any point to another can be calculated by using an 
inverse of their ratio. 
 



20. Euclid’s elements (300 B.C.) 

 

 

 

 

 

 

 

 

 

 

 

21. Archimedes: Sand reckoner (250 B.C.) 

 

Greek mathematician Euclid is known to almost every high school 
student as the author of The Elements, the long studied text on 
geometry and number theory. No other book except the Bible has been 
so widely translated and circulated. From the time it was written it was 
regarded as an extraordinary work and was studied by all 
mathematicians, even the greatest mathematician of antiquity -- 
Archimedes, and so it has been through the 23* centuries in many 
languages starting, in the original Greek, then in Arabic, Latin, and many 
modern languages that have followed 

                          Postulates : 

1. To draw a straight line from any point to any point. 
2. To produce a finite straight line continuously in a straight line. 
3. To describe a circle with any center and distance. 
4. Those all right angles are equal to one another. 

Axioms: 

1. That, if a straight line falling on two straight lines make the interior angles on the same side 
less than to right angles, the two straight lines, if produced indefinitely, meet on that side on 
which are the angles less than the two right angles things which are equal to the same thing are 
also equal to one another. 

2. If equals be added to equals, the wholes are equal. 
3. If equals be subtracted from equals, the remainders are equal. 
4. Things which coincide with one another are equal to one another. 
5. The whole is greater that the part. 

Contradiction-* 23 century or 24 century 

 

Syracuse, Italy’s mathematician Archimedes, the Sand Reckoner 
is a remarkable work in which Archimedes proposes a number 
system that uses powers of a myriad myriad (base 100,000,000) and 
is capable of expressing numbers up to 8 x 1063 in modern notation. 



22. Archimedes: Cattle problem (250 B.C.) 

 

                                                                                                                    

 

23. Archimedes: Stomachian puzzle (250 B.C.) 

 

24. π (250 BC) 

 

 
Greek mathematician  Archimedes (c. 250 B.C.) was the first to give us a mathematically rigorous range for ""-a 
value between 223/71 and 22/7. The Welsh mathematician William Jones (1675-1749) introduced the symbol  π in 
1706, most likely after the Greek word for periphery, which start, with the letter “π”. 

In 1769, Gotthold Ephraim Lessing was appointed librarian of the Herzog August 
Library in Wolfenbüttel, Germany, which contained many Greek and Latin 
manuscripts. A few years later, Lessing published translations of some of the 
manuscripts with commentaries. Among them was a Greek poem of forty-four 
lines, containing an arithmetical problem which asks the reader to find the 
number of cattle in the herd of the god of the sun. The name of Archimedes 
appears in the title of the poem, it being said that he sent it in a letter to 
Eratosthenes to be investigated by the mathematicians of Alexandria. The claim 
that Archimedes authored the poem is disputed, though, as no mention of the 
problem has been found in the writings of the Greek mathematicians.  The general 
solution was found in 1880 by A. Amthor. He gave the exact solution using 

exponentials and showed that it was about cattle, far more 
than could fit in the observable universe. The decimal form is too long for humans 
to calculate exactly, but multiple precision arithmetic packages on computers can 
easily write it out explicitly. 

 

The Stomachion is a puzzle that is at least 2,200 years old. It was 
known to the ancient Greeks. Some people think that it was 
created by the Greek scientist Archimedes, which is why it is 
sometimes called Archimedes’ Puzzle or the Loculus of 
Archimedes.  The puzzle consists of 14 pieces of various shapes 
and sizes. These pieces are created by dividing a square as shown 
below. The object of the puzzle is to rearrange the pieces to form 
other shapes.  
 

 Pi, symbolized by the Greek letter π, is the "ratio of a circle's 
circumference to its diameter and is approximately equal to 3.14159. 
Perhaps ancient peoples observed that for every revolution of a 
cartwheel, a cart moves forward about three times the diameter of the 
wheel-an early recognition that the circumference is about three times 
the diameter. An ancient Babylonian tablet states that the ratio of the 
circumference of a circle to the perimeter of an inscribed hexagon is I 
to 0.96, implying a value of pi of 3.125.  
 



 

 
25. Archimedean Semi-Regular Polyhedra(240 BC) 
 
 
 

 
 
ASRPs may be specified using a numerical notation that indicates the shapes around a vertex. 
For example, 3,5,3,5 means that a triangle, pentagon, triangle, and pentagon appear in that 
order. Using this notation, we have the following ASRPs: 3,4.3,4 (a cuboctahedron); 3,5.3,5 (an 
icosidodecahedron); 3,6,6 (a truncated tetrahedron); 4,6,6 (a truncated octahedron); 3,8,8 (a 
truncated cube); 5,6,6 (a truncated icosahedron, or soccer ball); 3,10,10 (a truncated 
dodecahedron); 3,4,4,4 (a rhombicuboctahedron); 4,6,8 (a truncated cuboctahedron); 3,4,5,4 (a 
rhombicosidodecahedron); 4,6,10 (a truncated icosidodecahedron); 3,3,3,3,4 (a snub cube, or 
snub cuboctahedron); and 3,3,3,3,5 (a snub dodecahedron, or snub icosidodecahedron). 
The 32-faced truncated icosahedron is particularly fascinating. Soccer ball shapes 
are based on this Archimedean solid. 
 
 

26. Cissoids of Diocles(180 BC) 

 
 

Like Platonic Solids, Archimedean semi-regular polyhedra (ASRP) 
are convex, multifaceted 3-D objects whose faces are all regular 
polygons that have sides of equal length and angles of equal 
degrees. However, for the ASRP, the faces are of different kinds. 
For example, the polyhedron formed by IZ pentagons and 20 
hexagons, which resembles a modem soccer ball, was described 
by Archimedes along with 12 other such polyhedra. Around every 
vertex (comer) of these kinds of solids, the same polygons appear 
in the same sequence-for example, hexagon-hexagon-triangle. 
Archimedes' original writings that described the 13 ASRP are lost 
and known only from other sources. During the Renaissance, 
artists. In 1619, Kepler presented the entire set in his book 
Hannonices Mundi (The Hannonies of the World).  
 

The cissoids of Diocles was discovered by Greek mathematician 
Diocles, around 180 B.C., during his attempts to use its remarkable 
properties to double a cube. "Doubling the cube" refers to a 
famous and ancient challenge of constructing a cube with a 
volume twice the volume of a given smaller cube, which means 
that the larger cube has an edge that is 3 times larger than the 
first cube. Diocles' use of the cissoid, and its intersection with a 
straight line, was theoretically correct, but did not rigorously 
follow the rules of Euclidean construction that allowed the use of 
only a compass and a straightedge.  
 
 



 
The name cissoid comes from the Greek term meaning "ivy-shaped." The graph of the curve 
extends to infinity along both directions of the y-axis and has a single cusp. Both branches of 
the curve that extend away from the cusp approach the same vertical asymptote. If we draw a 
circle that passes through the cusp at point 0 and that is tangent to the asymptote, then any 
line joining the cusp and a point M on the cissoid can be extended so that it intersects the 
asymptote at B. The length of the linear extension from C to B is always equal to the length 
between 0 and M. The curve may be expressed in polar coordinates as r = 2a (secθ- cosθ) or in 
rectangular coordinates as r2 = x3/(2a - x). Interestingly, the Cissoid can be produced by tracing 
the vertex of a parabola as it rolls, without slipping, on a second parabola of the same size. 
Diocles was fascinated by curves known as conic sections, and in his work On Burning Mirrors 
he discussed the focal point of a parabola. One of his goals was to find a mirror surface that 
focuses the maximum amount of heat when it is placed in sunlight. 
 
 
 
 

27. Diophantus's Arithmetica(250 BC) 
  

 
 
 
Diophantus's various works were preserved by the Arabs and translated into Latin in the 
sixteenth century. Diophantine equations, with their integer solutions, are named in his honor. 
Pierre de Fermat scribbled his famous Fermat's Last Theorem involving integer solutions of an

  + 
bn  = cn  in a French translation of Arithmetica, published in 1681.  Although the Babylonians 
were aware of some methods for solving linear and quadratic equations of the kind that 
fascinated Diophantus. 
The rediscovery of Arithmetica through Byzantine sources greatly aided the renaissance of 
mathematics in Western Europe and stimulated many mathematicians, of whom the greatest 
was Fermat. 

Greek mathematician Diophantus of Alexandria, sometimes 
called the "futher of algebra;' was the author of Arithmetica 
(c. 250), a series of mathematical texts that has influenced 
mathematics for centuries. Arithmetica, the most fumous 
work on algebra in all of Greek mathematics, contains 
various problems along with numerical solutions to 
equations. Diophantus is also important due to his advances 
in mathematical notation and his treatment of fractions as 
numbers. In the dedication to Arithmetica, Diophantus 
writes to Dionysus  that although the material in the book 
may be difficult, "it will be easy to grasp, with your 
enthusiasm and my teaching." 
 



28. Discovery of zero(650 AD) 

   

Zero was known is Indians well before others an ancient Indian astronomer named 
ARYABHATTA has discovered zero for his complex astronomical calculation. 
The first recorded zero is attributed to the Babylonians in the 3rd century B.C. – A long period 
followed when no one else used a zero place holder. But then the Mayans, halfway around the 
world in Central America, independently invented zero in 4th Century CE. The final independent 
invention of zero in India was long debated by scholars but seems to be set around the Middle 
of 5th century. It spread to Cambodia around the end of 7th century.  
From India it moved to China and then to the Islamic countries zero finally reached Western 
countries (Europe) in 12th century. 
 
 
29. Al-Khwarizmi’s algebra(830 AD) 
 

 
 
For al-Khwarizmi, al-jabr is a method in which we can eliminate negative quantities 
in an equation by adding the same quantity to each side. For example, we can reduce 
X2=50X-5X2  to 6X2 -50X  by adding 5X2  to both sides. Al-muqabala is a method 
Whereby we gather quantities of the same type to the same side of the equation. 
For Example   X2+15 = X+5 is reduced to X2+10=X 

Though undoubtedly taken for granted 
today, the number (or lack thereof) known 
as “zero” was not always a part of the 
human mathematical mindset. Since zero is 
more of a concept than an actual number, 
the development of ‘true zero’ took quite 
some time to enter into human 
consciousness. 
 

Abu Jafar Muhammed Ibn e Musa Al Khwarizmi , an Iranian 
mathematician, also known as the Father of algebra 
(Dtiophantus also called father of algebra). He was a scholar at 
the academy “House of wisdom” where he publishing multiple 
treatise during the rule of Al ma’mun (813-833). The most 
famous of these treatises is Hisab Al Jabr W’al-muqabala 
(treatise on algebra). He provides a very practical take on 
algebra in the text. He begins by defining natural numbers in 
an original useful way. From there, he proposes how to solve 
linear & quadratic equations. All of his work any typical 
algebraic notation seen today; instead the example problem he 
provides are all written out in Arabic.  
 

http://en.wikipedia.org/wiki/0_%28number%29#History


The book helped readers to solve equations such as those of the forms X2 +10X=39, X2+21=10X 
and  3X+4=X2, but more generally, al-Khwarizmi believed that the difficult mathematical 
problems could be solved if broken down into a series of Smaller steps. Al-Khwarizmi intended 
his book to be practical, helping people to make 
Calculations that deal with money, property inheritance, lawsuits, trade, and the digging Of 
canals. His book also contained example problems and solutions 
 
30. Thabit Amicable Number(850 AD) 
 

 
 
Thabit theorem is a method for discovering Amicable numbers invented in 9th century .It 
states that             P=3 × 2n-1 -1 
                           Q=3× 2n -1 
                                R=9× 22n-1-1,       where n>1, is a integer & P, Q, R are prime numbers. 
 Then 2n ×P×Q and 2n×R is pair of amicable number. 
This formula gave only three amicable numbers. That are (220,284), (17296, 18416), (9363584, 
9437056). 
Euler rule also gave a rule for amicable number i.e. 
P= [(2n-m+1) × 2m-1] 
q = [[(2n-m+1) × 2n-1] 
r= [[(2n-m+1)2× 2m+n-1] where n>m>0 are integer & p, q, r are prime no.  
Then 2n ×p ×q   &   2n ×r are a pair of available no 

Amicable numbers are two different numbers so related 
that the sum of the proper divisor of each of number is 
equal to the other number. 
Example:- (220,284)  
The proper divisor of 220 is 
1,2,4,5,10,11,20,22,44,55,110 and the sum of these 
numbers is 284. 
The proper divisor of 284 is 1, 2,4,71 & 144 and the sum 
of these numbers is 220. 
More Amicable numbers are 
(1184,1210),(2620,2924),(5020,5564),(6362,6368). 
These numbers were known to the Pythagoreans, who 
credited them with many mystical properties .A general 
formula by which some of these numbers could be 
derived was circa 850 by Iraqi mathematician Thabit-ibn-
Qurra (826-901). Other Arab mathematicians who 
studied amicable the mathematical numbers are Al-
Majriti , Al-Baghdadi and Al-farsi. The Iranian 
mathematician Mohd. Baqir Yazdi (16th century) 
discovered the pair (9363584, 9437056) though this has 
often been attributed to Desecrates. 
 



31. Chapters in Indian Mathematics(953 AD) 
 
Al-Uqlidisi ("the Euclidian") was an Arab mathematician whose Kitab al-fusul Ii 
al-hioob ai-Hindi (Chapters in Indian Mathematics) is the earliest-known Arabic work 
discussing the positional use of the Hindu-Arabic numerals, meaning the use of digits 
corresponding to 0 through 9 in which each position starting from the right of a 
multi-digit number corresponds to a power of 10 (for example, I, 10, 100, and 1,000). 
AI-Uqlidisi's work also represents the earliest-known arithmetic extant in Arabic. Although 
al-Uqlidisi was born and died in Damascus, he was well traveled and may have learned 
about Hindu mathematics in India. Only one copy of this manuscript remains today. 
Al-Uqlidisi also discussed the problems of previous mathematicians in terms of the 
new system of numerals. Dick Teresi, the author of several books about science and 
technology, writes, "His name was evidence of his reverence for the Greeks. He copied 
the works of Euclid, hence the name al-Uqlidisi. One of his legacies is paper-and-pen 
mathematics." During al-Uqlidisi's time, it was common in India and the Islamic world 
to perform mathematical calculations in the sand or in dust, erasing steps with one's 
hand as one proceeded. Al-Uqlidisi suggested that paper and pen be used instead. 
Written arithmetic preserves the process, and although his scheme did not involve 
erasure of ink numbers, it did permit greater flexibility in calculation. In a sense, paper 
drove the evolution of modem methods for performing multiplication and long division. 
Regis Morelon, the editor of the Encyclopedia of the History of Arabic Science, 
writes, "One of the most remarkable ideas in the arithmetic of al-Uqlidisi is the use 
of decimal fractions" and the use of the decimal symbol. For example, to halve 19 
successively, al-Uqlidisi gave the following: 19,9.5,4.75,2.375,1.1875,0.59375. 
Eventually, the advanced calculations enabled by the decimal system led to its common 
use throughout the region and the world. 
 

 
 



32. Omar Khayyam treatise(1070 AD) 

 

 

  

 

 

 

 

 

Omar Khayyam is the Persian mathematician, 
astronomer, philosopher and poet. He is best known 
for his collection of poems, the rubiyyat of omar 

Khayyam . However he also written a treatise on 
Demonstration of problem of Algebra (1070). In this 
treatise, he derived method for solving some cubic and 
higher order equations. An example of cubic equation 
that he solved  x3+ 200x = 200x + 2000. His treatise 
contains a comprehensive classification of cubic 
equations with geometric solutions found by means of 
intersecting conic sections.  

 Khayyam also show how to obtain the nth 
power of the binomial a+b in powers of a & 
b, when n is the whole number. Khayyam 
1077’s work on geometry, sharh ma 

ashkala min musadarat kitab uqlidis 

(commentaries on the difficulties in the 

postulate’s of Euclid book), provides an 
interesting look at Euclid’s famous parallel 
postulates. In sharh, he discussed properties 
of Non Euclidean Geometries and thus 
stumbled into a realm of mathematics that 
would not flourish until the 1800. 

 



33. Fibonacci’s Liber Abaci(1202 AD) 

 

 
The arrangement of seeds in a sunflower can be understood using the Fibonacci numbers. Sunflower heads, like 
those of other flower, contain families of interlaced spiral of seeds- one spiral is winding clockwise and the other is 
counterclockwise. The number of spiral in each heads as well as the number of petals in the flower is the Fibonacci 
number. 

 

34. Wheat on chessboard(1256 AD) 

 
 

Carl Boyer refers to the Leonardo of Pisa also known as Fibonacci, 
a wealthy Italian merchant, traveled through Egypt, Syria and 
Barbary (Algeria) and in 1202 published a book Liber Abaci (The 
book of Abacus). This introduced the world about Hindu-Arabic 
numeral system and decimal number system. Fibonacci notes, 
“These are the nine figures of Indians: 9,8,7,6,5,4,3,2,1. With these 
nine figures, and with the sign 0, which in Arabic is called Zepirum, 
any number can be represented as well as be demonstrated”. This 
book also introduced Western Europe to the famous number 
sequence 1,1,2,3,5,8,13,… which today is called the Fibonacci 
sequence. These numbers appear in an amazing number of 
mathematical disciplines and in nature.  

 



 

 

 

 

 

 

 

 

 

 

35. Harmonic series diverges(1350 AD) 

 

Nicole Oresme, the famous French philosopher of the Middle Ages, was the first to prove the divergence of the 
harmonic series (c. 1350). His results were lost for several centuries, and the result was proved agam by Italian 
mathematician Pietro Mengoh in 1647 and by Swiss mathematician Johann Bernoulli in 1687. His brother Jacob 
Bernoulli published a proof in his 1689 work Tractatus de Seriebus Infinitis (Treatise on Infinite Series), which he 
closes with: "So the soul of immensity dwells in minutia. And in narrowest limits no limits inhere. What joy to 
discern the minute in infinity! The vast to perceive in the small, what divinity!" 

 

 

 

 

 

 

About 1260 AD*, Ibn Khallikan, a Kurdish historian living in the Abbasid Empire (modern Iraq), wrote an encyclopedia with 
biographies of many famous men (though no women). One of the biographies includes a story about chess and the meaning of 
"exponential growth." The story takes place in India, because Ibn Khallikan knew that chess was a game that came from India. 
According to this story, King Shihram was a tyrant who oppressed his subjects. One of his subjects, a wise man named Sissa ibn 
Dahir, invented the game of chess for the king to play, to show him that a king needed all his subjects and should take good care 
of them. King Shihram was so pleased that he ordered that the game of chess should be preserved in the temples, and said that 
it was the best thing he knew of to train generals in the art of war, a glory to religion and the world, and the foundation of all 
justice. Then King Shihram asked Sissa ben Dahir what reward he wanted. Sissa answered that he didn't want any reward, but 
the king insisted. Finally Sissa said that he would take this reward: the king should put one grain of wheat on the first square of a 
chessboard, two grains of wheat on the second square, four grains on the third square, eight grains on the fourth square, and so 
on, doubling the number of grains of wheat with each square (an exponential rate of growth). The solution is to compute the sum 
of first 64 term of geometrical progression, i.e. 1+2+2^2+…+2^63=2^64-1, which is a walloping 18,446,744,073, 709,551,615 
grains of wheat.  He ordered his slaves to bring out the chessboard and they started putting on the wheat. Everything went well 
for a while, but the king was surprised to see that by the time they got halfway through the chess board the 32nd square 
required more than four billion grains of wheat, or about 100,000 kilos of wheat. Now Sissa didn't seem so stupid anymore. Even 
so, King Shihram was willing to pay up. But as the slaves began on the second half of the chessboard, King Shihram gradually 
realized that he couldn't pay that much wheat - in fact, to finish the chessboard you would need as much wheat as six times the 
weight of all the living things on Earth. 

*contradiction…1260 AD or 1256 

 

If God were infinity, then divergent series would be His angels flying 
higher and higher to reach Him. Given an eternity, all such angels 
approach their Creator. For example, consider the following infinite 
series: I + 2 + 3 + 4 ... . If we add one term of the series each year, in 
four years the sum will be 10. Eventually, after an infinite number of 
years, the sum reaches infinity. Mathematicians call such series 
divergent because they explode to infinity, given an infinite number of 
terms. 
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36. Law of Cosine(1427 AD) 

 

 

 

 

 

 

 

 

 
 
37.Discoveries of series formula for π(1500 AD) 

The series was independently discovered by many mathematicians at different places. German mathematician 
Gottfried Wilhelm Leibnitz in 1673, the Scottish mathematician and astronomer James Gregory in 1671 and the 
Indian mathematician in the 14th or 15th century whose identity is not definitely known, although the result is 
usually ascribed by Nilakantha Somyaji (1444-1544) in his book Tantrasangrah in 1500. Somyaji was aware that a 
finite series of rational numbers could never suffice to represent π. 

Pi is symbolized by the Greek letter π, is the ratio of the circumference of the circle to its diameter and can be 
expressed by a formula π/4 = 1 - 1/3 + 1/5 - 1/7+….. And the arctan function(x)( this function is given by Gregory 
before Leibnitz) in trigonometry is also represented as x = x – x/3 + x/5 – x/7+…. Using the archtan series, the series 
for π/4 is obtained by setting x = 1. 

Euclid’s Element contains the seeds of concepts that lead to the law of cosine. In the Fifteenth century, the Persian 
astronomer and mathematician Ghiyath al Din Jamshid Mas’ud al Kashi provide accurate trigonometric tables and 
expressed the theorem in a form suitable for modern usage. French mathematician Francois Viete discovered the law 
independently of al Kashi. In France, the law of cosine is known as the Theoreme d’al Kashi, after al Kashi’s unification of 
existing work on the subject. Al Kashi’s most important work is The Key of Arithmetic completed in 1427, which discusses 
the mathematics used in astronomy, surveying, architecture and accounting. He uses decimal fractions in calculating the 
surface area needed for certain muqarnas, decorative structure in Islamic and Persian architecture. 

 

The law of cosine may be used for calculating the length of one side of a triangle when the angle opposite this 
site and the length of other 2 sides are known. The law expressed as c2 = a2 + b2– 2abCos(C), where a,b and c are 
the sides of a triangle and C is the angle between the sides a and b. because of its generality the application of 
law ranges from land surveying to calculating the flight path of aircraft. 

 



 

 

38. Golden ratio(1509 AD) 

 

 

 

   

In 1509, a Italian mathematician Luca Pacioli, a close 
friend of Leonardo da vinci, published the Divina 
proportione, a treatise on a number that is now widely 
known as the Golden Ratio. We can easily understand the 
proportion by dividing a line into 2 segments so that the 
ratio of the whole segment to the longer parts is the 
same as the ratio of the longer part (b) to the shorter part 
(a) or (a +b)/b = b/a = 1.61803… 

 



 39. Loxodrome (1537 AD) 

 

 

 

 

 

40. Cardano’s Ars Magna(1545 AD) 

 
 

 

The loxodrome was invented by Portuguese 
mathematician and geographer Pedro Nunes. For 
the purposes of terrestrial navigation, the 
loxodromic spiral (also known as the spherical 
helix, loxodrome and rhumb line) goes through the 
north south meridians of the earth at a constant 
angle. The loxodrome coil is like a gigantic snake 
around the earth and spirals around the poles 
without reaching them. Loxodromic path allow the 
navigator to continually direct the vessel to the 
same point of the compass even though the path 
to the destination is longer. 

 

The Ars Magna (Latin: "The Great Art") is an important book 
on Algebra written by Italian mathematician Girolamo 
Cardano. It was first published in 1545 under the title Artis 
Magnæ, Sive de Regulis Algebraicis Liber Unus (Book number 
one about The Great Art, or The Rules of Algebra). There was 
a second edition in Cardano's lifetime, published in 1570. It 
is considered one of the three greatest scientific treatises of 
the early Renaissance, together with Copernicus' De 
revolutionibus orbium coelestium and Vesalius' De humani 
corporis fabrica. The first editions of these three books were 
published within a two year span (1543–1545). The book, 
which is divided into forty chapters, contains the first 
published solution to cubic and quartic equations  and 
negative numbers.  

 Cardano acknowledges that Tartaglia gave him the formula for solving a type of cubic equations and that the same formula had been discovered by 
Scipiano del Ferro. He also acknowledges that it was Ferrari who found a way of solving quartic equations. It is a common misconception that Cardano 
introduced complex numbers in solving cubic equations. Since (in modern notation) Cardano's formula for a root of the polynomial x3 + px + q  is 

 

square roots of negative numbers appear naturally in this context. However, q2/4 + p3/27 never happens to be negative 
in the specific cases in which Cardano applies the formula. 
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41. Mercator projection(1569 AD) 

The Mercator projection is a cylindrical map projection presented by the Flemish geographer 
and cartographer Gerardus Mercator in 1569. It became the standard map projection for 
nautical purposes because of its ability to represent lines of constant course, known as rhumb 
lines or loxodromes, as straight segments which conserve the angles with the meridians. While 
the linear scale is equal in all directions around any point, thus preserving the angles and the 
shapes of small objects (which makes the projection conformal), the Mercator projection 
distorts the size and shape of large objects, as the scale increases from the Equator to the 
poles, where it becomes infinite 
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42. Imaginary numbers     i (1572 AD) 

In 1545, Girolamo Cardano wrote a book titled Ars Magna.  He solved the equation x(10-x)=40, finding 
the answer to be 5 plus or minus√-15.  Although he found that this was the answer, he greatly disliked 
imaginary numbers.  He said that work with them would be, “as subtle as it would be useless”, and 
referred to working with them as “mental torture.”  

 Later, in 1637, Rene Descartes came up with the standard form for complex numbers, which is a+bi.   
He assumed that if they were involved, you couldn’t solve the problem.  Lastly, he came up with the 
term “imaginary”, although he meant it to be negative.  Issac Newton agreed with Descartes, and Albert 
Girad even went as far as to call these, “solutions impossible”.  Although these people didn’t enjoy the 
thought of imaginary numbers, they couldn’t stop other mathematicians from believing that i might 
exist. 

      One of the ways people wanted to make them accepted was to be able to plot them of a graph.  In 
this case, the X-axis is would be real numbers, and the Y-axis would be imaginary numbers.  If the 
number were purely imaginary (like 2i), it would just be on the Y-axis.  If the number was purely real, it 
would just be on the X-axis.  The first person who considered this kind of graph was John Wallis. 

In 1685, he said that a complex number was just a point on a plane, but he was ignored.  More than a 
century later, Caspar Wessel published a paper showing how to represent complex numbers in a plane, 
but was also ignored. In 1777, Euler made the symbol i stand for √-1, which made it a little easier to 
understand.  In 1804, Abbe Buee thought about John Wallis’s idea about graphing imaginary numbers, 
and agreed with him.  In 1806, Jean Robert Argand wrote how to plot them in a plane, and today the 
plane is called the Argand diagram.  In 1831, Carl Friedrich Gauss made Argand’s idea popular, and 
introduced it to many people.  In addition, Gauss took Descartes’ a+bi notation, and called this a 
complex number.  It took all these people working together to get the world, for the most part, to 
accept complex numbers.  In 1833, William Rowan Hamilton expressed complex numbers as pairs of real 
numbers (such as 4+3i being expresses as (4,3)), making them less confusing and even more 
believable.  After this, many people, such as Karl Weierstrass, Hermann Schwarz, Richard Dedekind, Otto 
Holder, Henri Poincare, Eduard Study, and Sir Frank Macfarlane Burnet all studied the general theory of 
complex numbers.  Augustin Louis Cauchy and Niels Henrik Able made a general theory about complex 
numbers accepted.  August Mobius made many notes about how to apply complex numbers in 
geometry.  All of these mathematicians helped the world better understand complex numbers, and how 
they are useful. 

 

 

 

 



43.Kepler Conjecture(1611 AD) 

In the late 1590, English nobleman and seafarer Sir Walter Raleigh set this great mathematical 
investigation in motion. While stocking his ship for yet another expedition, Raleigh asked his assistant, 
Thomas Harriot, to develop a formula that would allow him to know how many cannonballs were in a 
given stack simply by looking at the shape of the pile. After contemplating the question for a while, 
Harriot turned to one of the foremost mathematicians, physicists, and astronomers of the time, 
Johannes Kepler. Kepler did not reflect long, and came to the conclusion that the densest way to pack 
three-dimensional spheres was to stack them in the same manner that market vendors stack their 
apples, oranges, and melons.thus was born one of mathematics most famous problem. What is the most 
efficient way to pack spheres in 3D space?  

 

 

                                                                                                
 

 

 

 

The next step toward a solution was taken 
by Hungarian mathematician László Fejes Tóth . 

Fejes Tóth (1953) showed that the problem of determining the 
maximum density of all arrangements (regular and irregular) 
could be reduced to a finite (but very large) number of 
calculations. This meant that a proof by exhaustion was, in 
principle, possible. As Fejes Tóth realised, a fast enough computer 
could turn this theoretical result into a practical approach to the 
problem. 

 English mathematician Claude Ambrose Rogers (1958) 
established an upper bound value of about 78%, and subsequent 
efforts by other mathematicians reduced this value slightly, but 
this was still much larger than the cubic close packing density of 
about 74%. 

Hsiang (1993, 2001) claimed to prove the Kepler conjecture using 
geometric methods. However Gábor Fejes Tóth (the son of László 
Fejes Tóth) stated in his review of the paper "As far as details are 
concerned, my opinion is that many of the key statements have 
no acceptable proofs." Hales (1994) gave a detailed criticism of 
Hsiang's work, to which Hsiang (1995) responded. The current 
consensus is that Hsiang's proof is incomplete. 
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44. Logarithm(1614 AD) 

 
 
 
 

 

 

 

 

  

 

Logarithms were invented 
independently by John Napier, a 
Scotsman, and by Joost Burgi, a Swiss.  
Napier's logarithms were published in 
1614; Burgi's logarithms were 
published in 1620.  The objective of 
both men was to simplify 
mathematical calculations. This 
approach originally arose out of a 
desire to simplify multiplication and 
division to the level of addition and 
subtraction. Of course, in this era of 
the cheap hand calculator, this is not 
necessary anymore but it still serves 
as a useful way to introduce 
logarithms.   
 

 

Napier's approach was algebraic and Burgi's approach was geometric.  The invention of the common 
system of logarithms is due to the combined effort of Napier and Henry Biggs in 1624. Natural 
logarithms first arose as more or less accidental variations of Napier's original logarithms. The earliest 
natural logarithms occur in 1618. It can’t be said too often: a logarithm is nothing more than an 
exponent.  The basic concept of logarithms can be expressed as a shortcut.. 
Multiplication is a shortcut for Addition: 3 x 5 means 5 + 5 + 5 
Exponents are a shortcut for Multiplication: 4^3 means 4 x 4 x 4  
Logarithms are a shortcut for Exponents: 10^2 = 100. 
 



45. Slide rule(1621 AD) 

   

 

 

 

 

 

 

46. Fermat spiral(1636 AD) 
                                                                                                 

 
                                                          

 

 

                                              

William Oughtred and others developed the slide rule in 
the 1600s. The slide rule is based on the work 
on logarithms by John Napier. Before electronic 
calculators  were developed, slide rules were the tool 
used most often in science and engineering. The use of 
slide rules continued to grow through the 1950s and 
1960s even as digital computing devices were gradually 
introduced; but around 1974 the electronic scientific 
calculator made the slide rule largely obsolete and most 
suppliers exited the business. 

 

The slide rule, also known as a slipstick, is a mechanical analog computer. The slide rule is used primarily 
for multiplication and division, and also for "scientific" functions such as roots, logarithms and trigonometry, but does not 
generally perform addition or subtraction. 

There are many different styles of slide rules. Generally, they are either have a linear form or that of a circle. They have a 
standardised set of markings (called scales). These scales are used for mathematical computations. Some slide rules have 
been made for specialised fields of application, for example aviationor finance. Such slide rules have special scales which 
are useful in the particular field of application, in addition to the common ones. 

 

Pierre de Fermat was one of the most 
brilliant and productive mathematicians 
of his time, making many contributions to 
the differential and integral calculus, 
number theory, optics, and analytic 
geometry, as well as initiating the 
development of probability theory in 
correspondence with Pascal. Pierre de 
Fermat was born on August 17, 1601 in 
Beaumont-de-Lomagne, France, and died 
on January 12, 1665 in Castres.   

Planar transcendental curve the equation 
of which in polar coordinates has the form 

 

 

To each value of  correspond two values of  — a positive and a negative one. The Fermat spiral is 
centrally symmetric relative to the pole, which is a point of inflection. It belongs to the class of so-
called algebraic spirals. 

They were first studied by P. Fermat (1636). 
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47. Fermat’s last theorem (1637 AD) 

                                                                  

 

 

Fermat followed the statement of the conjecture with the infamous teaser: 

“I have discovered a truly remarkable proof which this margin is too small to contain” 

Over the years, Fermat’s last theorem was proven for various sub-cases which required specific 
values of n, but no direct progress was made along these linestowards a general proof. These 
proofs were bittersweet victories, as each one still left an infinite number of cases unproved. 
Among the big names who took a crack at the theorem are Euler, Gauss, Germaine, Cauchy, 
Dirichlet, and Legendre. 
Fermat’s last theorem was put forth by Pierre de Fermat around 1630. It statesthat 
the Diophantine equation             
 an +bn =cn   has no non-zero solutions for n>2, (a,b,c,n∈N)  
 
 
 
 
 
 
 
 
 
 
 
 

Fermat’s last theorem was actually 
a conjecture and remained unproved for 
over 300 years. It was finally proven in 1994 
by Andrew Wiles, an English mathematician 
working at Princeton. It was always called a 
“theorem”, due to Fermat’s uncanny ability 
to propose true conjectures. Originally the 
statement was discovered by Fermat’s son 
Clement-Samuel among margin notes that 
Fermat had made in his copy of 
Diophantus’ Arithmetica. 
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48. Cardioid (1637 AD) 

 
 
 
 
 

49. Logarithmic Spiral (1638)  

 

 

 

 

Possibly as a result of this unique property, the spira mirabilis has evolved in nature, appearing 
in certain growing forms such as nautilus shells and sunflower heads. Jacob Bernoulli wanted 

A cardioid is defined by the path of a point on the 
circumference of a circle of radius  that is rolling 
without slipping on another circle of radius . Its 
name is derived from Greek work kardioedides for 
heart-shaped, where kardia means heart 
and eidosmeans shape, though it is actually shaped 
more like the outline of the cross section of an apple. 
The cardioid was first studied by Ole Christensen 
Roemer in 1674 in an effort to try to find the best 
design for gear teeth. However, the curve was not 
given its name until an Italian mathematician, Johann 
Castillon, used it in a paper in 1741. Since the 
cardioid is also a roulette, more specifically 
an epicycloid, and a special case of a Limacon of 
Pascal, it is believed that it could have originated 
from Etiene Pascal's studies.  

 

Spira mirabilis, Latin for "miraculous spiral", is another name 
for the logarithmic spiral. Although this curve had already 
been named by other mathematicians, the specific name 
("miraculous" or "marvelous" spiral) was given to this curve 
by Jacob Bernoulli, because he was fascinated by one of its 
unique mathematical properties: the size of the spiral 
increases but its shape is unaltered with each successive 
curve, a property known as self-similarity. This is the spiral for 
which the radius grows exponentially with the angle. The 
logarithmic relation between radius and angle leads to the 
name of logarithmic spiral or logistique (in French). 
The distances where a radius from the origin meets the curve 
are in geometric progression. The logarithmic spiral is the 
curve for which the angle between the tangent and the radius 
(the polar tangent) is a constant. 
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such a spiral engraved on his headstone along with the phrase "Eadem mutata resurgo" 
("Although changed, I shall arise the same."), but, by error, an Archimedean spiralwas placed 
there instead. 

50. Projective Geometry (1639 AD) 
The first geometrical properties of a projective nature were discovered in the third century A.D. by Pappus of 
Alexandria. Filippo Brunelleschi (1404–1472) started investigating the geometry of perspective in 1425. 

 

Meanwhile, Jean-Victor Poncelet had published the foundational treatise on projective geometry in 1822. Poncelet 
separated the projective properties of objects in individual class and establishing a relationship between metric 
and projective properties. The non-Euclidean geometries discovered shortly thereafter were eventually 
demonstrated to have models, such as the Klein model of hyperbolic space, relating to projective geometry. 
projective geometry, branch of geometry concerned with those properties of geometric figures that remain 
invariant under projection. The basic elements are points, lines, and planes, and the following statements are 
usually taken as assumptions: (1) two points lie in a unique line; (2) three points not on the same line determine a 
plane; (3) two lines in a plane intersect in a point; (4) two planes intersect in a line; (5) three planes not containing 
the same line intersect in a point. The basic elements retain their character under projection. 

 

 

Johannes Kepler (1571–1630) and Gérard 
Desargues (1591–1661) independently developed the 
pivotal concept of the "point at infinity". Desargues 
developed an alternative way of constructing perspective 
drawings by generalizing the use of vanishing points to 
include the case when these are infinitely far away. He 
made Euclidean geometry, where parallel lines are truly 
parallel, into a special case of an all-encompassing 
geometric system. Desargues's study on conic sections 
drew the attention of 16-year old Blaise Pascal and helped 
him formulate Pascal's theorem. The works of Gaspard 
Monge at the end of 18th and beginning of 19th century 
were important for the subsequent development of 
projective geometry. The work of Desargues was ignored 
until Michel Chasles chanced upon a handwritten copy in 
1845.  
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51. Torricelli’s trumpet(1641 AD) 

Torricelli's trumpet is sometimes called Gabriel's horn and is named after Italian 
physicist and mathematician Evangelista Torricelli, who discovered it in 1641. He was 
astounded by this trumpet that seemed to be an infinitely long solid with an infinite area 
surface and a finite volume. Torricelli and his colleagues thought that it was a deep 
paradox and unfortunately did not have the tools of calculus to fully appreciate and 
understand the object. Today, Torricelli is remembered for the telescopic astronomy 
he did with Galileo and for his invention of the barometer. The name "Gabriel's horn" 
conjures visions of Archangel Gabriel blowing his hom to announce Judgment Day, 
thereby associating the infinite with the powers of God. 

 

  

  

52. Pascal’s triangle (1654) 

 

One of the most famous integer patterns in the history of 
mathematics is Pascal’s triangle. Blaise Pascal was the 
first to write a treatise about this progression in 1654, 
although the pattern had been known by Persian poet & 
mathematician Omar Khayyam as far as back as A.D. 1100 
& even earlier to the mathematician of India & ancient 
China.  

The first seven rows of Pascal’s triangle are depicted at 
upper right. Each number in the triangle is the sum of 
above two of it. Fractal figure of it is shown in figure. 



When even numbers in the triangle are replaced by dots & odd number by gaps, the resulting 
pattern is a fractal, with intricate repeating patterns on different size scales. These fractal 
figures have practical importance in that they can provide models for materials scientist to help 
produce new structure with novel properties. Mathematician have discussed the role of 
Pascal’s triangle in probability theory, in the expansion of binomial theorem in the form (x + y)n  
and in various number theory applications for years. Mathematician Donald Knuth once 
indicated that there are so many relation and pattern in the Pascal’s triangle. The horizontal 
sums of the Pascal’s triangle are twice from the first one and each line is also the power 
exponent of 11. 

53. The Length of Neile’s Semi cubical Parabola (1657) 

                                                                                                                  

had conjectured that few curves could be rectified. Around 1687, Dutch mathematician and 
physicist Christian Huygens (1629-1695) showed that the semicubical parabola is a curve along 
which a particle may descend under the force of gravity so that it moves equal vertical 
distances in equal times. The semicubical parabola can also be expressed as a pair of equations: 
x = t2  and y = at3 . Given this form, the length of the curve as a function of t is  (1/27) x (4 + 9t2 
)3/2  - 8/27. In other words, the curve has this length on the interval from 0 to t. In the literature, 
we sometimes see Neile's parabola referred to as the curve for y3 = ax2 , which places the cusp 
of the curve pointing downward along the y-axis instead of to the left on the x-axis. 
 

 

 

 

In 1657, British mathematician William Neile became the first person 
to "rectify," or find the arc length of, a nontrivial algebraic curve. 
This special curve is called a semicubical parabola, defined by x3  = 
ay2 . When written as y = :t: ax3/2 , it is easier to see how It might 
have been considered "half a cubic" and hence the genesis of the 
term semicubic. A report of Neile's work appeared in British 
mathematician John Wallis's De Cycloide in 1659. Interestingly, only 
the arc lengths of transcendental curves, such as the logarithmic 
spiral and cycloid, had been calculated before 1659. Because 
attempts to rectify the ellipse and hyperbola were unsuccessful, 
some mathematicians, such as French philosopher and 
mathematician Rene Descartes (1596-1650), 



54. Viviani’s theorem (1659) 

 

 

 

 

55. Discoveries of Calculus (1665)                                      

                                                                                                                          

 

 

• calculating the slope of the tangent line to a curve at any point along its length 
• determining the velocity and acceleration of an object given a function describing its 

position, and designing such a position function given the object's velocity or 
acceleration 

• calculating arc lengths and the volume and surface area of solids 
• calculating the relative and absolute extreme of objects, especially projectiles 

The theorem is named after the Italian mathematician and 
scientist Vincenzo Viviani. Galileo was so impressed with the 
Viviani’s talent that he took him into his house in Arcetri, Italy 
as a collaborator. According to this theorem, “If we place a 
point inside a equilateral triangle. From this point draw a line 
to each of the sides of the triangle so that these three lines are 
perpendicular to each side. No matter where you place the 
point, the sum of the perpendicular distances from the point to 
the sides is equal to the height of the triangle. 
Researchers have found ways to extend Viviani's theorem to 
problems in which the point is placed outside the triangle and 
have also explored the application of the theorem to any 
regular n-sided polygon. In this case, the sum of the 
perpendicular distances from an interior point to the n sides is 
n times the apothem of the polygon. (An apothem is the 
distance from the center to a side.) The theorem can also be 
studied in higher dimensions. 
 

• Calculus was created by Isaac Newton, a British scientist, as well 
as Gottfried Leibniz, a self-taught German mathematician, in the 
17th century. It has been long disputed who should take credit for 
inventing calculus first, but both independently made discoveries 
that led to what we know now as calculus. Newton discovered the 
inverse relationship between the derivative (slope of a curve) and 
the integral (the area beneath it), which deemed him as the 
creator of calculus. Thereafter, calculus was actively used to solve 
the major scientific dilemmas of the time, such as: 

 

http://www.wyzant.com/resources/lessons/math/calculus/differentiation
http://www.wyzant.com/resources/lessons/math/calculus/integration


For Newton, the applications for calculus were geometrical and related to the physical world - 
such as describing the orbit of the planets around the sun. For Leibniz, calculus was more about 
analysis of change in graphs. Leibniz's work was just as important as Newton's, and many of his 
notations are used today, such as the notations for taking the derivative and the integral. 

56. Tautochrone Problem (1673) 
 

 
 
 
 
Technically speaking, the tautochrone is a cycloid- that is, a curve defined by the path of a point 
on the edge of a circle as the circle rolls along a straight line. The tautochrone is also called the 
brachistochrone when referring to the curve that gives a frictionless object the fastest rate of 
descent when the object slides down from one point to another. Huygens attempted to use his 
discovery to design a more accurate pendulum clock. The clock made use of portions of 
tautochrone surfaces near where the string pivoted to ensure that the string followed the 
optimum curve no matter where the pendulum started swinging. (Alas, the friction due to the 
surfaces introduced significant errors.) 
The special property of the tautochrone is mentioned in Moby Dick in a discussion 
on a try-pot, a bowl used for rendering blubber to produce oil: "[The try-pot] is also a place for 
profound mathematical meditation. It was in the left-hand try-pot of the pequod, with the 
soapstone diligently circling round me, that I was first indirectly struck by the remarkable fact, 
that in geometry all bodies gliding along a cycloid, my soapstone, for example, will descend 
from any point in precisely the same time." 
 
 

 
 
 
 
 
 
 

In the 1600s, mathematicians and physicists sought a 
curve that specified the shape of a special kind of 
ramp. In particular, objects are placed on the ramp, 
one at a time, and they must slide down to the very 
bottom, always in the same amount of time and no 
matter where they start on the ramp. The objects are 
accelerated by gravity, and the ramp is considered to 
have no friction. 
Dutch mathematician, astronomer, and physicist 
Christian Huygens discovered a solution in 1673 and 
published it in his Horologium oscillatoriumi (The 
Pendulum Clock). 



57. Astroid (1674) 

                                                                                                   
 

 

 

 

In 1725, mathematician Daniel Bernoulli discovered that an astroid is also traced by an inner 
circle that has ¾ the diameter of the fixed circle. In other words, this traces out the same curve 
as the inner circle with only ¼ the diameter of the larger one. 
In physics, the Stoner-Wolfforth astroid curve is used to characterize various 
Properties of energy and magnetism. U.S. Patent 4,987,984 describes the use of an asteroid for 
mechanical roller clutches: "The astroid curve provides the same good dispersal of stresses that 
the equivalent circular arc would, hut removes less cam race material, giving a stronger 
structure." 
Interestingly, tangent lines along the astroid curve, when extended until they touch the x- and 
y-axis, all have the same length. You can visualize this by imagining a ladder leaning at all 
possible angles against a wan, which traces out a portion of the astroid curve. 
 

 

 

 

 

 

The astroid is a curve with four cusps that is traced by a 
point on a circle that rolls like a gear along the inside of a 
larger circle. This larger circle is four times the diameter of 
the small circle. The astroid is notable for the diversity of 
famous mathematicians who researched its intriguing 
properties. The curve was first studied by the Danish 
astronomer Ole Rl'lmer in 1674, as a result of his quest for 
gear teeth with more useful shapes. Swiss mathematician 
Johann Bernoulli (1691), German mathematician Gottfried 
Leibniz (1715), and French mathe  matician Jean d'Alembert 
(1748) all became fascinated by the curve. 
The astroid has the equation x2/3+ y2/3 = R2/3, where R is the 
radius of the stationary outer circle, and R/4 is the radius of 
the inner rolling circle. The length of the astroid is 6R, and 
the area is 3πR2/8. Interestingly, its 6R circumference has no 
dependence on π, despite the involvement of circles that 
are used for generating the astroid. 
 

 

 



58. L'Hopital's Analysis of the Infinitely Small (1696) 
 
Suppose that we have one of the following cases, 
                             

 
where a can be any real number, infinity or negative infinity.  In these cases we have, 

     
 
 
                                                                                                                                                                                                                                                                                                                                                           

                                                                                                                      

 

 

 
 
 
 
 

So, L’Hospital’s Rule tells us that if we have an indeterminate 

form 0/0 or  all we need to do is differentiate the numerator 
and differentiate the denominator and then take the limit. 
 In 1696, French mathematician Marquis de I'Hapital published 
Europe's first calculus textbook, Analyse des infiniment petit., 
POUT I'intelligence des lignes courbes (Analysis of the Infinitely 
Small, for the Understanding of Calculus). 
In the early 1690s, I'Hopital hired Johann Bernoulli to teach him 
calculus. 
Aside from his textbook, I'Hopital is known for the rule of 
calculus, included in his book, for calculating the limiting value of 
a fraction whose numerator and denominator either both 
approach zero or both approach infinity. He initially had planned 
a military career, but poor eyesight caused him to switch to 
mathematics. Today, we know that I'Hapital, in 1694, paid 
Bernoulli 300 francs a year to tell him of his discoveries, which 
I'Hapital described in his book. In 1704, after I'Hopital's death, 
Bernoulli began to speak of the deal and claimed that many of 
the results in Analysis of the Infinitely Small were due to him. 
 
 

 



59. Law of Large Numbers (1713) 
 
 
 

 
for example 0.5. Stated more formally, given a sequence of independent and identically 
distributed random variables with a finite population mean and variance, the average of these 
observations will approach the theoretical population mean 
In Ars Conjectandi, Bernoulli estimates the proportion of white balls in an urn filled with an 
unknown number of black and white balls. By drawing balls from the urn and "randomly" 
replacing a ball after each draw, he estimates the proportion of white balls by the proportion of 
balls drawn that are white. By doing this enough times, he obtains any desired accuracy for the 
estimate. Bernoulli writes, "If observations of all events were to be continued throughout all 
eternity (and, hence, the ultimate probability would tend toward perfect certainty), everything 
in the world would be perceived to happen in fixed ratios .... Even in the most accidental... 
occurrences, we would be bound to recognize . .. a certain fate." 
 
60. Euler's Number, e (1727) 
                                                                                          

                                                                                                
            
 
 
 

In 1713, Swiss mathematician Jacob Bernoulli's proof of his 
Law of Large Numbers 
(LLN) was presented in a posthumous publication, Ars 
Conjectandi (The Art of 
Conjecturing). The LLN is a theorem in probability that 
describes the long-term stability of a random variable. For 
example, when the number of observations of an experiment 
(such as the tossing of a coin) is sufficiently large, then the 
proportion of an outcome (such as the occurrence of heads) 
will be close to the probability of the outcome. 

The number e, which is approximately equal to 
2.71828, can be calculated in many ways. For example, 
it is the limit value of the expression (1+1/n) raised to 
the nth power, when n increases indefinitely. Although 
mathematicians like Jacob Bernoulli and Gottfried 
Leibniz were aware of the constant, Swiss 
mathematician Leonhard Euler was among the first to 
extensively study the number, and he was the first to 
use the symbol e in letters written in 1727. In 1737, he 
showed that e is irrational-that is, it cannot be 
expressed as a ratio of two integers. In 1748, he 
calculated 18 of its digits, and today more than 
100,000,000,000 digits of e are known. 



61. Stirling's Formula (1730) 
 

 
 
 
for example, when determining the number of different ways of arranging objects in a 
sequence. They also occur in number theory, probability, and calculus. Because factorial values 
grow so large (for example, 70! is greater than 10100, and 25,206! is greater than 10100, 000), 
convenient methods for approximating large factorials are extremely useful. Stirling's formula, 

n! = �2𝜋 e-nnn+1/2, provides an accurate estimate for n factorial. Here, the ≈ symbol means 
"approximately equal to," and e and π are the mathematical constants e ≈ 2.71828 and π ≈ 
3.14159. For large values of n, this expression results in an even simpler-looking 
approximation,ln(n!) ≈ nln(n) - n, which can also be written as n! ≈ nne-n . In 1730, Scottish 
mathematician James Stirling presented his approximation for the value of nl in his most 
important work, Methodus Differentialis. Stirling began his career in mathematics amidst 
political and religious conflict. 

 
62. Normal Distribution Curve (1733) 
                                                                  

                                                                    
 
 
Throughout his life, de Moivre remained poor and earned money on the side by playing chess in 
coffeehouses. 
The normal distribution-also called the Gaussian distribution, in honor of Carl 
Friedrich Gauss, who studied the curve years later- represents an important family of 
continuous probability distributions that are applied in studies of population demographics, 
health statistics, astronomical measurements, heredity, intelligence, insurance statistics etc. 

These days, factorials are everywhere in 
mathematics. For non-negative integers n, “n 
factorial" (written as n!), is the product of all 
positive integers less than or equal to n. 
For example, 4! = I x 2 x 3 x 4 = 24. The notation n! 
was introduced by French 
mathematician Christian Kramp in 1808. Factorials 
are important in combin -atorics,  
 

In 1733, French mathematician Abraham de 
Moivre was the first to describe the 
normal distribution curve, or law of errors, in 
Approximatio ad summam tenninorum binomii 
(a+b)n  in seriem expansi ("Approximation to the 
Sum of the Terms of a Binomial (a+b)n Expanded 
as a Series"). 



The normal distribution is defined by two key parameters, the mean (or average) and the 
standard deviation, which quantifies the spread or variability of the data. The normal 
distribution, when graphed, is often called the bell curve because of its symmetric be like shape 
with values more concentrated in the middle than in the tails at the sides of the curve. 
 
63. Euler-Mascheroni Constant  (1735) 
 
 

 
 
 
The evaluation of γ is considerably more difficult than π. Here are the first few digits: 0.5772 
1566490153286060651209 008240243104215933593992 . ... Swiss mathematician Leonhard 
Euler discussed γ in a paper. "De Progressionibus harmonicis observationes" ("Observations 
about Harmonic Progressions"), published in 1735, but he was only able to calculate it to six 
decimal places at the time. In 1790, Italian mathematician and priest Lorenzo Mascheroni 
computed additional digits. Today, we don't know if the number can be expressed as a fraction 
(in the way that a number like O.l428571428571...can be expressed as In). Julian Havil, who 
devoted an entire book to γ, tells of stories in which the English mathematician C. H. Hardy 
offered to give up his Savilian Chair at Oxford to anyone who proved γ could not be expressed 
as a fraction. 
 

64. Goldbach Conjecture (1742) 
 
 

                                                                              

The Euler-Mascheroni constant, denoted by the Greek 
letter γ, has a numerical value of 0.5772157 . . .. This 
number links the exponentials and logarithms to number 
theory, and it is defined by the limit of (I +1/2 +1/3+ ... + 
1/n - log n) as n approaches infinity. The reach of γ is far 
and wide, as it plays roles in such diverse areas as infinite 
series, products, probability, and definite integral 
representations. For example, the average number of 
divisors of all numbers from I to n is very close to In n + 
2γ – 1. While we presently know π to 1,241, I 00,000 ,000 
decimal places, in 2008, only about 10,000,000,000 
places of γ were known 

The most challenging problems in mathematics 
are among the easiest and simplest to state. In 
1742, Prussian historian and mathematician 
Christian Goldbach conjectured that every 
integer greater than 5 can be written as the sum 
of three prime numbers, such as 21 = 11 + 7 + 3. 
(A prime number is a number larger than 1, such 
as 5 or 13, that is divisible only by itself or 1.) 



 

As re-expressed by Swiss mathematician Leonhard Euler, an equivalent conjecture (called the 
"strong" Goldbach conjecture) asserts that all positive even integers greater than 2 can be 
expressed as the sum of two primes. In order to promote the novel Uncle Petros and 
Goldbach's Conjecture, publishing giant Faber and Faber offered a $1,000,000 prize to anyone 
who proved Goldbach's conjecture between March 20, 2000, and March 20, 2002, but the prize 
went unclaimed, and the conjecture remains open. In 2008, Tomas Oliveira e Silva, a researcher 
at the University of Aveiro, Portugal, ran a distributed computer search that has verified the 
conjecture up to 12. 1017 Of course, no amount of computing power can confirm the conjecture 
for every number; thus, mathematicians hope for an actual proof that Goldbach's intuibon was 
right. In 1966, Chen Jing-Run, a Chinese mathematician, made some progress when he proved 
that every sufficiently large even number is the sum of one prime, plus a number that is the 
product of at most two primes. So, for example, 18 is equal to 3 + (3 X 5). In 1995, french 
mathematician Olivier Raman! showed that every even number greater than or equal to 4 is the 
sum of at most six primes. 
 
65. Agnesi's Instituzioni Analitiche (1748) 
 
 
 
 
 

 
 
 
 
 
 
 
 

Italian mathematician Maria Agnesi is the author of Instituzioni 
analitiche (Analytical Institutions), the first comprehensive textbook 
that covered both differential and integral calculus, and the first 
surviving mathematical work written by a woman. Dutch 
mathematician Dirk Ian Struik referred to Agnesi as "the first 
important woman mathematician since Hypatia (A.D. fifth 
century)." 
Agnesi was a child prodigy, speaking at least seven languages by 
age 13. For much 
of her life, she avoided social interactions and devoted herself 
entirely to the study of mathematics and religion. Clifford Truesdell 
writes, "She did ask her father's permission to become a nun. 
Horrified that his dearest child should desire to leave him, he 
begged her to change her mind." She agreed to continue living with 
her father so long as she could live in relative seclusion. The book 
also includes a discussion of the cubic curve now known as the 
Witch of Agnesi and expressed as y = 8a3/(x2+4a2). Agnesi spent all 
her money on helping the poor and she died in total poverty in a 
poorhouse. 
 



66. Euler's Formula for Polyhedra  (1751)          
 

                                                                                               
 
In 1751, Swiss mathematician and physicist Leonhard Euler discovered that any convex 
polyhedron (an object with Hat faces and straight edges), with V vertices, E edges, and F faces, 
satisfies the equation V - E + F = 2.  A polyhedron is convex if it has no indentations or holes, or 
more formally, if every line segment connecting interior points is entirely contained within the 
interior of the figure. 
 Interestingly, around 1639, Rene Descartes discovered a related polyhedral formula that may 
be converted to Euler's formula through several mathematical steps. The polyhedron formula 
was later generalized to the study of networks and graphs, and to help mathematicians 
understand a wide range of shapes with holes and in higher dimensions. Sadly, Euler went blind 
toward the end of his life. However, British science writer David Darling notes, "the quantity of 
his output seemed to be inversely proportional to the quality of his sight, because his rate of 
publication increased after he became almost totally blind in 1766." 
 
67. Bayes' Theorem (1761) 
 
 

 
                                                       
                                                                               
  
 

Euler's formula for polyhedra is considered to be one 
of the most beautiful formulas in all of mathematics 
and one of the first great formulas of topology-the 
study of shapes and their interrelationships. A survey 
conducted of Mathematical Intelligencer readers 
ranked the formula as the second most beautiful 
formula in history, second to Euler's eiπ+1 = 0 
discussed in the entry Euler's Number, e (1727). 

Bayes' theorem, formulated by British 
mathematician and Presbyterian minister 
Thomas Bayes in 1761. Conditional 
probability refers to the probability of 
some event A, given the occurrence of 
some other event B, written as P(A/B). 
Bayes' theorem states: P(A/B) = [P(B/A) × 
P(A)]/P(B). Here, P(A) is called the prior 
probability of A because it is the 
probability of event A without taking into 
account anything we know about B. P(B/A) 
is the conditional probability of B given A. 
P(B) is the prior probability of B.  
 



  68.   Minimal Surface (1774) 
 
 

                                                                                           
 
 
 
         The mean curvature of the surface is zero. The mathematician's quest for minimal surfaces 
and proofs of their minimality has lasted for more than two centuries. Minimal surfaces with 
bounding curves that twist into the third dimensions can be both beautiful and complicated. In 
1744, Swiss mathematician Leonhard Euler discovered the catenoid, the first example of a 
minimal surface beyond mere trivial examples like circular areas. In 1776, French geometer 
Jean Meusnier discovered the helicoid minimal surface.  Another minimal surface wasn't found 
until 1873 by German mathematician Heinrich Scherk. The same year, the Belgian physicist 
Joseph Plateau performed experiments that led him to conjecture that soap films always form 
minimal surfaces. "Plateau's problem" deals with the mathematics required to prove this to be 
true. (Plateau went blind as a result of staring into the sun for 25 seconds in an experiment 
dealing with vision physiology.) More recent examples include Costa's minimal surface, which 
was first described mathematically in 1982 by Brazilian mathematician Celso Costa. Computers 
and computer graphics now play a significant role in helping mathematicians construct and 
visualize minimal surfaces. 
 
 
69. Sangaku Geometry (1789) 
 

 

Imagine withdrawing a flat wire 
ring from soapy water. Because 
the ring contains a disk-shaped 
soap film that has less area than 
other shapes that hypothetically 
may have formed, mathematicians 
call the surface a minimal surface. 
More formally, a finite minimal 
surface is often characterized as 
having the smallest possible area 
bounded by a given closed curve or 
curves. 

 

 

A tradition known as Sangaku, or "Japanese temple 
geometry," arose during Japan's period of isolation 
from the West, roughly between 1639 and 1854. 
Mathematicians, farmers, samurai, women, and 
children solved difficult geometry problems and 
inscribed the solutions on tablets. These colorful 
tablets were then hung under the roofs of the 
temples. More than 800 tablets have survived, and 
many of them feature problems concerning 
tangent circles 

 



As one example, consider the figure on the opposite page, a late Sangaku tablet from 1873 
created by an 13-year-old boy named Kinjiro Takasaka. The illustration shows a fan, which is 
one-third of a complete circle. Given the diameter d1 of the yellow-shaded circle, what is the 
diameter d2 of the green shaded circle? The answer is d2 ≈ d1(√3072 + 62)/193. 
In 1789, Japanese mathematician Fujita Kagen published Shimpeki Sampo 
(Mathematical Problems Suspended before the Temple), the first collection of Sangaku 
problems. The oldest surviving tablet dates from 1683, although other historical documents 
refer to examples from as early as 1668. Most of the Sangaku are strangely different from 
typical geometry problems found in textbooks because the Sangaku aficionados were usually 
obsessed with circles and ellipses. Some of the Sangaku problems are so difficult that physicist 
Tony Rothman and educator Hidetoshi Fukagawa write, "Modem geometers invariably tackle 
them with advanced methods, including calculus and affine transform ations." However, by 
avoiding calculus. Sangaku problems were, in principle, sufficiently simple that children could 
solve them with some effort. Chad Boutin writes, "Perhaps it's not surprising that Sudoku -the 
number puzzles that everyone seems to be working on these days-first became popular in 
Japan before spreading across the ocean.  
 
 
70. Least Squares (1795) 
 
 

                                                                                                              
 
 
 
 
 
As background, the Italian astronomer Giuseppe Piazzi (1746-1826) had originally discovered 
Ceres in 1800, but the asteroid later disappeared behind the sun and could not be relocated. 
Austrian astronomer Franz Xavier von Zach (1754-1832) noted that "without the intelligent 
work and calculations of Doctor Gauss, we might not have found Ceres again." Interestingly, 
Gauss kept his methods a secret to maintain an advantage over his contemporaries and to 
enhance his reputation. Later in his life, he sometimes published scientific results as a cipher, so 
that he could always prove that he had made various discoveries before others had. Gauss 
finally published his secret least-squares method in 1809 in his Theory of the Motion of the 
Heavenly Bodies. 

Least squares is a mathematical procedure for 
finding the "best-fitting" curve for a given set 
of data points by minimizing the sum of the 
squares of the offsets of the points from the 
curve. 
In 1795, German mathematician and scientist 
Carl Friedrich Gauss, at the age of 
18, began to develop least-squares analysis. He 
demonstrated the vaille of his approach in 
1801, when he predicted the future location of 
the asteroid Ceres.  
 
 



71. Constructing a Regular Heptadecagon (1796) 
 
 

 
 
 
 
Gauss was able to add more polygons to this list, namely those with a prime number of sides of 
the form 2(2n)+ I, where n is an integer. We can make a list of the first few such numbers: F0 = 3, 
F1 = 5, F2 = 17, F3 = 257 & F4 = 65,537.  (Numbers of this form are also known as Fermat 
numbers, and they are not necessarily prime.) A 257-gon was constructed in 1832. When he 
was older, Gauss still regarded his 17-gon finding as one of his greatest achievements and he 
asked that a regular 17-gon be placed on his tombstone. According to legend, the stonemason 
declined, stating that the difficult construction would essentially make the 17-gon look like a 
circle. The year 1796 was an auspicious year for Gauss, when his ideas gushed like a fountain 
from a fire hose. Aside from solving the heptadecagon construction (March 30), Gauss invented 
modular arithmetic and presented his quadratic reciprocity law (April 8) and the prime number 
theorem (May 31). He proved that every positive integer is represented as a sum of at most 
three triangular numbers (July 10). He also discovered solutions of polynomials with coefficients 
in finite fields (October 1). 
 
 
 
 
 
 
 
 
 

In 1796, when Gauss was still a teenager, he 
discovered a way to construct a regular 17-
sided polygon, also known as a 
heptadecagon, using just a straightedge and 
compass. He published the result in his 
monumental 1801 work, Disquisitiones 
Arithmeticae (Arithmetic Disquisitions). 
Gauss's construction was very significant 
because only failed attempts had been made 
since the time of Euclid. For more than 1,000 
years, mathematicians had known how to 
construct, with a compass and straightedge, 
regular n-gons in which n was a multiple of 3, 
5, and powers of 2. 

 

 

 

 

 

 

 

 

 

 

 

 



72. Fundamental Theorem of Algebra (1797) 
 
 

                                                                                                                                             
 
As back ground, polynomial equations of degree n are of the form P(x) = an xn + an-1 xn-1+ ... + a1 x 
+ a0 = 0 where an ≠ 0. This theorem is notable, in part, because of the sheer number of attempts 
at proving it through history. German mathematician Carl Friedrich Gauss is usually credited 
with the first proof of the FTA, discovered in 1797. In his doctoral thesis, published in 1799, he 
presented his first proof, which focused on polynomials with real coefficients, and also on his 
objections to the other previous attempts at proofs. By today's standards, Gauss's proof was 
not rigorously complete, because he relied on the continuity of certain curves, but it was a 
significant improvement over all previous attempts at a proof. His fourth proof was in the last 
paper he ever wrote, which appeared in 1849, exactly 50 years after his dissertation. Jean-
Robert Argand (1768-1822) also published a rigorous proof of the Fundamental Theorem of 
Algebra in 1806 for polynomials with complex coefficients 
 
73. Gauss's DisquisitionesArithmeticae (1801) 

 

 
 
 
 
 
 

The Fundamental Theorem of Algebra (FTA) is 
stated in several forms, one of which is that every 
polynomial of degree n≥1, with real or complex 
coefficients, has n real or complex roots. In other 
words, a polynomial P(x) of degree n has n values xi 
(some of which are possibly repeated) for which 
P(Xi) = 0. 

 

 

 

 

In the Disquisitiones, Gauss introduced the notion of 
congruence and in so doing unified number theory." 
Gauss published this monumental work at the age 
of 24. The Disquisitiones involves modular 
arithmetic, which relies on congruency 
relationships. Two integers p and q are "congruent 
modulo the integer s" if and only if (p - q) is evenly 
divisible by s. Such congruence is written as p ≡ q 
(mod s). Using this compact notation, Gauss 
restated and proved the famous quadratic 
reciprocity theorem, which was incompletely 
proven several years earlier by French 
mathematician Adrien- Marie Legendre (1752-
1833). 



Gauss devoted an entire section of his book to his proof of this theorem. He considered this 
beloved theorem of quadratic reciprocity to be the "golden theorem" or the "gem of 
arithmetic," which so enthralled Gauss that he went on to provide eight separate proofs over 
his lifetime.  In Disquisitiones, Gauss's approach to providing theorems, followed by proofs, 
corollaries, and examples was used by subsequent authors.  

 
74.Three-Armed Protractor (1801) 

                                                                                  
 
 
 
 
 
 
 
In 1916, the United States Hydrographic Office explained the use of his protractor: "To plot a 
position, the two angles observed between the three selected [known] objects are set on the 
instrument, which is then moved over the chart until the three beveled edges pass respectively 
and simultaneously through the three objects. The center of the instrument will then mark the 
ship's position which may be pricked on the chart or marked with a pencil point through the 
center hole."  

 
 
 
 
 
 
 
 
 
 
 
 

In the seventeenth century, protractors began to be 
used as stand-alone instruments rather than as parts of 
other devices, when sailors used them on ocean maps. 
In 1801, Joseph Huddart, an English naval captain  
invented the three-armed protractor for plotting the 
position of a boat on navigation maps. This kind of 
protractor makes use of two outer arms that may rotate 
with respect to a fixed central arm. The two rotating 
arms may be clamped so that they can be set at fixed 
angles. 

 



75. Fourier Series (1807) 
 
 
 

 
 
 
 
 
 
 
For these problems, researchers are usually given the temperatures at points on the surface, as 
well as at its edges, at time t = O. Fourier introduced a series with sine and cosine terms in 
order to find solutions to these kinds of problems. More generally, he found that any 
differentiable function can be represented to arbitrary accuracy by a sum of sine and cosine 
functions, no matter how bizarre the function may look when graphed. British physicist Sir 
James Jeans (1877-1946) 
remarked, "Fourier's theorem tells us that every curve, no matter what its nature may be, or in 
what way it was originally obtained, can be exactly reproduced by superposing a sufficient 
number of simple harmonic curves-in brief, every curve can be built up by piling up waves." 
 

76. Laplace's Theorie Analytique des Probabilites (1812) 

 

The first major treatise on probability that 
combines probability theory and calculus was 
French mathematician and astronomer Pierre-
Simon Laplace's Theorie Analytique des 
Probabilites (Analytical Theory of Probabilities). 
Probability theorists focus on random 
phenomena. Although a single roll of the dice 
may be considered a random event, after 
numerous repetitions, certain statistical 
patterns become apparent, and these patterns 
can be studied and used to make predictions. 

Fourier series are useful in countless 
applications today, ranging from vibration 
analysis to image processing-virtually any field in 
which a frequency analysis is important.  Before 
French mathematician Joseph Fourier 
discovered his famous series, he accompanied 
Napoleon on his 1789 expedition of Egypt, 
where Fourier spent several years studying 
Egyptian artifacts. Fourier's research on the 
mathematical theory of heat began around 1804 
when he was back in France, and in 1807 he had 
completed his important memoir On the 
Propagation of Heat in Solid Bodies. One of his 
interests was heat diffusion in different shapes. 



The first edition of Laplace's Theorie Analytique was dedicated to Napoleon Bonaparte and 
discusses methods of finding probabilities of compound events from component probabilities. 
The book also discusses the method ofleast squares and Buffon's Needle and considers many 
practical applications. To explain how probabilistic processes can yield predictable results, 
Laplace asks readers to imagine several urns arranged in a circle. One urn contains only black 
balls, while another contains only white balls. The other urns have various ball mixtures. If we 
withdraw a ball, place it in the adjacent urn, and continue around the circle, eventually the ratio 
of black to white balls will be approximately the same in all of the urns.  

77. Bessel Functions (1817) 

 

                                                                                                   

 
 
 
Although the order can be any real number, the scope of this section is limited to non-negative 
integers, i.e., unless specified otherwise.German mathematician Friedrich Bessel, who had no 
formal education after the age of 14, developed Bessel functions in 1817 for use in his studies 
of the motion of planets moving under mutual gravitation. Bessel had generalized the earlier 
findings of mathematician Daniel Bernoulli (1700-1782).Bessel functions are solutions to 
specific differential equations, and when graphed, the functions resemble rippling, decaying 
sinusoidal waves.In 2006, researchers at Japan's Akishima Laboratories and Osaka University 
relied on Bessel function theory to create a device that uses waves to draw actual text and 
pictures on the surface of water. The device, called AMOEBA (Advanced Multiple Organized 
Experimental Basin), consists of 50 water wave generators encircling a cylindrical tank 1.6 
meters in diameter and 30 cm deep. AMOEBA is capable of spelling out the entire Roman 
alphabet. Each picture or letter remains on the water surface only for a moment, but they can 
be produced in succession every few seconds. 

In the Sturm-Liouville Boundary Value Problem, 
there is an important special case called Bessel's 
Differential Equation which arises in numerous 
problems, especially in polar and cylindrical 
coordinates. Bessel's Differential Equation is 
defined as: 

 

Where n is a non-negative real number. The 
solutions of this equation are called Bessel 
Functions of order 



78. Babbage Mechanical Computer (1822) 

 
 

                                                                                                        
Babbage thought the device would be most useful in producing mathematical tables, but he 
worried about mistakes that would be made by humans who transcribed the results from its 31 
metal output wheels. Babbage's Difference Engine, begun in 1822 but never completed, was 
designed to compute values of polynomial functions, using about 25,000 mechanical parts. He 
also had plans to create a more general-purpose computer, the Analytical Engine, which could 
be programmed using punch cards and had separate areas for number storage and 
computation. Estimates suggest that an Analytical Engine capable of storing 1,000 50-digit 
numbers would be more than 100 feet (about 30 meters) in length. Ada Lovelace, the daughter 
of the English poet Lord Byron, gave specifications for a program for the Analytical Engine. 
Although Babbage provided assistance to Ada, many consider Ada to be the first computer 
programmer. 
 
 
79. Cauchy's Le Calculus Infinitesimal (1823) 
 
 
 

 
 
 

Charles Babbage was an English analyst, statistician, and 
inventor who was also interested in the topic of religious 
miracles. Babbage is often considered the most important 
mathematician-engineer involved in the prehistory of 
computers. In particular, he is famous for conceiving an 
enormous hand-cranked mechanical calculator, an early 
progenitor of our modem computers. 
 

  In his 1823 Resume des lecons sur le calcul 
infinitesimal (Resume of Lessons on Infinitesimal 
Calculus), the prolific French mathematician 
Augustin Cauchy provides a rigorous development 
of calculus and a modern proof of the 
Fundamental Theorem of Calculus, which elegantly 
unites the two major branches of calculus 
(differential and integral) into a single framework. 
Cauchy begins his treatise with a clear definition of 
the derivative. His mentor, French mathematician 
Joseph-Louis Lagrange (1736-1813), thought in 
terms of graphs of curves and considered the 
derivative a tangent to a curve. In order to 
determine a derivative, Lagrange would search for 
derivative formulas as necessary.  
 

 



 
 Similarly, by clarifying the notion of the integral in calculus, Cauchy demonstrated the 
Fundamental Theorem of Calculus, which establishes a way in which we can compute the 
integral of f(x) from x = a to x = b for any continuous function f. More particularly, the 
Fundamental Theorem of Calculus states that if f is an integrable function in the interval [a, b], 
and if H(x) is the integral of f(x) from a to x ≤ b, then the derivative of H(x) is identical to f(x). In 
other words, H'(x) = f(x). 
 
 
80. Barycentric Calculus (1827) 
 

                                                                                                
 
 
 
 
The new algebraic tools, developed by Mobius in his 1827 book Der Barycentrische Calcul (The 
Barycentric Calculus), have since turned out to have wide application. This classic book also 
discusses related topics in analytical geometry such as projective transformations. The word 
barycentric is derived from the Greek barys for "heavy" and refers to the center of mass. 
Mobius understood that several weights positioned along a straight stick can be replaced by a 
single weight at the stick's center of mass. From this simple principle, he constructed a 
mathematics system in which numerical coefficients are assigned to every point in space.  
 
 
 
 
 
 
 

German mathematician August Ferdinand 
Mobius, famous for his one-sided loop called 
the Mobius strip, also made a major 
contribution to mathematics with his 
barycentric calculus, a geometrical method for 
defining a point as the center of gravity of 
certain other points to which coefficients or 
weights are ascribed. Mobius's barycentric 
coordinates (or barycentrics) are as coordinates 
with respect to a reference triangle. These 
coordinates are usually written as triples of 
numbers, which can be visualized as 
corresponding to masses placed at the vertices 
of the triangle. In this way, these masses 
determine a point, which is the geometric 
centroid of the three masses. 



81. Non-Euclidean Geometry (1829) 
 
 
 

 
 
 
This can be visualized by imagining a bowling ball sinking into a rubber sheet. If you were to 
place a marble into the depression formed by the stretched rubber sheet, and give the marble a 
sideways push, it would orbit the bowling ball for a while, like a planet orbiting the sun. 
In 1829, Russian mathematician Nicolai Lobachevsky published On the Principles 
of Geometry, in which he imagined a perfectly consistent geometry that results from assuming 
that the parallel postulate is false. Several years earlier, Hungarian mathematician Janos Bolyai 
had worked on a similar non-Euclidean geometry, but his publication was delayed until 1932. In 
1854, German mathematician Bernhard Riemann generalized the findings of Bolyai and 
Lobachevsky by showing that various non-Euclidean geometries are possible, given the 
appropriative number of dimensions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the time of Euclid (c. 325-270 B.C.), the 
so-called parallel postulate seemed to 
reasonably describe how our three-
dimensional world works. According to this 
postulate, given a straight line and a point not 
on that line, only one straight line through the 
point exists that never intersects the original 
line. Over time, the formulations of non-
Euclidean geometry, in which this postulate 
does not hold, have had dramatic 
consequences. Einstein's General Theory of 
Relativity represents space-time as a non-
Euclidean geometry in which space-time 
actually warps, or curves, near gravitating 
bodies such as the sun and planets. 



82. Mobius Function (1831) 
 
 
 
 
 
 
 

                                                                
 
 
 
 
 
The probability that a number falls in the – 1 mailbox turns out to be 3/π2 -the same probability 
as for falling in the +1 mailbox. Let's further consider the + 1 mailbox. in which Mobius places all 
the numbers, such as 6, that factor into an even number of distinct primes (2 X 3 = 6). For 
completeness, Mobius put 1 into this bin. Numbers in this mailbox include (I, 6, 10, 14, I5, 21, 
22, .. . ). The first 20 terms of the wonderful Mobius function are µ(n) = (1, - 1, - 1, 0, -1, 1, -
1,0,0, 1, - 1, 0, -1, 1, 1, 0, - 1, 0, - 1, O). 
 Amazingly, scientists have found practical uses of the Mobius function in various 
physical interpretations of subatomic particle theory. The Mobius function is also 
fascinating because almost everything about its behavior is unsolved and because 
numerous elegant mathematical identities exist that involve µ(n). 
 
 
 
 
 
 
 

In 1831, August Mobius introduced his exotic 
Mobius function, today written as µ(n). To 
understand the function, imagine placing all the 
integers into just one of three large mailboxes. 
The first mailbox is painted with a big 0, the 
second with + 1  and a third with  -1. In mailbox 
0, Mobius places multiples of square numbers 
(other than 1), including (4, 8, 9, 12, 16, 18 .... ). 
A square number is a number such as 4, 9, or 16 
that is the square of another integer. For 
example, µ( 12)  =  0, because 12 is a multiple of 
the square number 4 and is thus placed in 
mailbox "0." In the -1 mailbox, Mobius places 
any number that factors into an odd number of 
distinct prime numbers. For example, 5x 2 x 3 = 
30, so 30 is in this list because it has these three 
prime factors. All prime numbers are also on 
this list because they only have one prime 
factor, themselves. Thus, µ(29) = - I and µ(30) = -
1. 

 

 



 
83. Group Theory (1832) 
 
 

 
 
 
 
 
 
 
Calois who laid the foundations of modern group theory in a sad letter that he wrote to a friend 
the night before his fatal duel." One key aspect of a group is that it is a set of elements with an 
operation that combines any two of its elements to form a third element within that set.  A 
geometrical object can be characterized by a group called a symmetry group that specifies the 
symmetry features of the object. This group contains a set of transformations that leave the 
object unchanged when applied. Today, important topics in group theory are often illustrated 
to students using the Rubik's Cube.  
 
84. Quaternion (1843) 
 
 
 
 

                                                                                                      
 
 
 

French mathematician Evariste Calois 
was responsible for Calois theory, an 
important branch of abstract algebra, 
and famous for his contributions to 
group theory, which concerns the 
mathematical study of symmetry in 
1832. He produced a method of 
determining when a general equation 
could be solved by radicals, thereby, in 
essence giving a kick start to modern 
group theory. "In 1832, he was killed by 
a pistol shot. He was not yet 21. 

Quaternions are four-dimensional numbers1 
conceived in 1843 by Irish mathe -matician 
William Hamilton. Interestingly, Theodore 
Kaczynski (the "Unabomber") wrote intricate 
mathematical treatises on quaternion before he 
went on his killing spree. Quaternion can be 
represented in four dimensions by Q = a0 + a1i + 
a2j + a3k where i, j, and k are (like the imaginary 
number i) unit vectors in three orthogonal 
(perpendicular) directions, and they are 
perpendicular to the real number axis. To add or 
multiply two quaternion, we treat them as 
polynomials in i, j, and k, but use the following 
rules to deal with products i2 = j2 = k2 = -1;  ij = - ji 
= k;  jk = - kj = i; and ki = -ik = j.  
 



85. Catalan Conjecture (1844) 
 
 
 

 
 
 
 
 
 
 
 
Belgian mathematician Eugene Catalan wrote a conjectured that 8 and 9 are the only powers of 
integers that are consecutive! If other such pairs had existed, they might have been found by 
searching for integer values for which xp – yq = 1 is true and for values of x, y, p, and q greater 
than 1. Catalan believed that only one solution exists: 32 – 23 = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This history of the Catalan conjecture has a 
colorful cast of characters. Hundreds of years 
before Catalan, Frenchman Levi ben Gerson 
(1288-1 344) - better known as Gersonides or the 
Ralbag(a famous rabbi, philosopher, 
mathematician, and Talmudist) had already 
demonstrated a more restricted version of the 
conjecture, namely that the only powers of 2 and 
3 that differ by 1 are 32 and 23.  To set the stage 
for understanding the Catalan conjecture, 
consider the squares of whole numbers (integers) 
greater than 1, that is, 4, 9,16,25, ... and also 
consider the sequence of cubes, 8, 27, 64, 125 .... 
if we merge the two lists and place them in order, 
we obtain 4,8,9, 16,25,27, 36, .... Notice that 8 
(the cube of 2) and 9 (the square of3) are 
consecutive integers. In 1844. 



86. The Matrices of Sylvester (1850) 
 
 
 

                                                                                                   
 
 
 
Although matrix theory flourished in the mid-1800s, simple concepts of matrices date back to 
before the birth of Christ, when the Chinese knew of Magic Squares and also began to apply 
matrix methods to solve simultaneous equations. In the 1600s, 
Japanese mathematician Seki Kowa (in 1683) and German mathematician Gottfried Leibnitz (in 
1693) also explored the early use of matrices. 
Cayley worked as a lawyer for more than a decade, while publishing about 250 
Mathematics papers. During his time at Cambridge, he published another 650 papers. Cayley 
was first to introduce matrix multiplication. 
 
 
 
 
 
 
 
 
 
 
 
 

In 1850, in his paper "On a New Class of 
Theorems," British mathematician James 
Sylvester was the first to use the word matrix 
when referring to a rectangular arrangement, or 
array, of elements that can be added and 
multiplied. Matrices are often used to describe a 
system of linear equations or simply to 
represent information that depends on two or 
more parameters. Credit for understating and 
identifying the complete significance of the 
algebraic properties of matrices is given to the 
English mathematician Arthur Cayley for his later 
work on matrices in 1855. Because Cayley and 
Sylvester enjoyed many years of close 
collaboration, they are often considered the 
joint founders of matrix theory 



87. Four-Color Theorem (1852) 
 
 

 
 
 
 
 
In 1852, mathematician and botanist Francis Guthrie was the first to conjecture 
that four colors must be sufficient when he attempted to color a map of counties of England. 
Since the time of Guthne, mathematicians had tried in vain to prove the consequences of this 
seemingly simple four-color observation, and it remained one of the most famous unsolved 
problems in topology. 
Finally, in 1976, mathematicians Kenneth Appel and Wolfgang Hakcn succeeded 
in proving the four-color theorem with the help of a computer testing thousands of cases, 
making it the first problem in pure mathematics to make use of a computer to produce an 
essential component for the proof. 
Another is the classification of finite simple groups, embodied in a 1O,OOO-page multiauthor 
project. Alas, the traditional people-centered methods for ensuring that a proof is correct 
breaks down when a paper reaches thousands of pages. 
 
88. Boolean algebra (1854) 
 
 

                                                                                                                 

Mapmakers have believed for centuries 
that just four colors were sufficient for 
coloring any map drawn on a plane, so 
that no two distinct regions sharing a 
common edge are the same color, 
although two regions can share a common 
vertex and have the same color. Today, we 
know for certain that while some planar 
maps require fewer colors, no map 
requires more than four. Four colors are 
sufficient for maps drawn on spheres and 
cylinders. Seven colors are sufficient to 
paint any map on a torus (the surface of a 
doughnut shape). 
 

English mathematician George Boole's most important work 
was his 1854 An Investigation into the Laws of Thought, on 
Which Are Founded the Mathematical Theories of Logic and 
Probabilities. Boole was interested in reducing logic to a 
simple algebra involving just two quantities, 0 and I, and 
three basic operations: and, or, and not. A Boolean algebra 
(BA) is a set A together with binary operations + and · and a 
unary operation −, and elements 0, 1 of A such that the 
following laws hold: commutative and associative laws for 
addition and multiplication, distributive laws both for 
multiplication over addition and for addition over 
multiplication, and the following special laws: 
 
 

 



 
x + (x · y) = x 
x · (x + y) = x 
x + (−x) = 1 
x · (−x) = 0  

 
 
 Boole died at the age of 49 after he developed a bad fever.  
Approximately seventy years after Boole's death, American mathematician Claude Shannon 
(1916-2001) was introduced to Boolean algebra, showed how Boolean algebra could be used to 
optimize the design of systems of telephone routing switches. He also demonstrated that 
circuits with relays could solve Boolean algebra problems. 
 
89. Harmonograph (1857) 
 
 
 
 

 
 
 
 
 
More complex harmonographs may employ additional pendulums that hang off one another.  
Harmonograph is a device consisting of two coupled pendula, usually oscillating at right angles 
to each other, which are attached to a pen. The resulting motion can produce beautiful, 
complicated curves which eventually terminate in a point as the motion of the pendula is 
damped by friction. In the absence of friction (and for small displacements so that the general 
pendulum equations of motion become simple harmonic motion 
 
 
 
 

The first harmonographs were constructed in 
1857, when French mathematician and 
physicist Jules Antoine Lissajous 
demonstrated patterns produced by two 
tuning forks, attached to small mirrors that 
vibrated at different frequencies. A beam of 
light reflected off the mirrors to produce the 
intricate curves that delighted a general 
public. British mathematician and physicist 
Hugh Blackburn is credited with making the 
first more traditional pendulum versions of 
the harmonograph, and many variations of 
Blackburn's hannonograph have been 
created up to the present day. 

http://mathworld.wolfram.com/SimpleHarmonicMotion.html


90. The Mobius Strip (1858) 
 
 
 
 
 

                                                                                                                            
 
 
91. Holditch's Theorem (1858) 

 
 

 
 
 
 
 
 

 

German mathematician August Ferdinand Mobius was made 
the Mobius strip when he was almost seventy years old. Its 
impossible to color the mobius strip with different color at 
different sides of it. Years after Mobius's death, the 
popularity and applications of the strip grew, and it has 
become an integral part of mathematics, magic, science, art, 
engineering, literature, and music.  
August Mobius had simultaneously discovered his famous 
strip with a contemporary scholar, the German 
mathematician Johann Benedict Listing (1808--1882). 
However, Mobius seems to have taken the concept a little 
further than Listing, as Mobius more closely explored some 
of the remarkable properties of this strip. The Mobius strip is 
the first one-sided surface discovered and investigated by 
humans. It seems far-fetched that no one had described the 
properties of one-sided surfaces until the mid-1800s, but 
history has recorded no such observations. 
 

The theorem was published by Rev. Hamnet Holditch in 
1858. Holditch was president of Caius College in 
Cambridge during the middle part of the 1800s. 
According to this theorem, 

Let a chord of constant length be slid around a smooth, 
closed, convex curve , and choose a point on the 
chord which divides it into segments of lengths and . 
This point will trace out a new closed curve , as 
illustrated above. Provided certain conditions are met, 
the area between and is given by , as first 
shown by Holditch in 1858.  

The Holditch curve for a circle of radius is another 
circle which, from the theorem, has radius 

  

 

http://mathworld.wolfram.com/Chord.html
http://mathworld.wolfram.com/Chord.html
http://mathworld.wolfram.com/Chord.html
http://mathworld.wolfram.com/Chord.html
http://mathworld.wolfram.com/Circle.html
http://mathworld.wolfram.com/Circle.html
http://mathworld.wolfram.com/Radius.html
http://mathworld.wolfram.com/Radius.html
http://mathworld.wolfram.com/Circle.html
http://mathworld.wolfram.com/Circle.html
http://mathworld.wolfram.com/Radius.html
http://mathworld.wolfram.com/Radius.html


92. Riemann Hypothesis (1859) 

 

                                                                                                           

 

 

 

 

 

lie on a certain vertical straight line. This has been checked for the first 1,500,000,000 solutions. 
A proof that it is true for every interesting solution would shed light on many of the mysteries 
surrounding the distribution of prime numbers. 

 

93. Beltrami's Pseudosphere (1868) 

 

 

This conjecture is written by mathematician 
George Bernhard Riemann. First published in 
Riemann's groundbreaking 1859 paper (Riemann 
1859),The distribution of such prime numbers 
among all natural numbers does not follow any 
regular pattern, however the German 
mathematician G.F.B. Riemann (1826 - 1866) 
observed that the frequency of prime numbers is 
very closely related to the behavior of an elaborate 
function    

  ζ(s) = 1 + 1/2s + 1/3s + 1/4s + ...  

called the Riemann Zeta function. The Riemann 
hypothesis asserts that all interesting solutions of 
the equation 

    ζ(s) = 0  

 

 

The pseudosphere is a geometrical object that 
resembles two musical horns glued together at their 
rims. The "mouthpieces" of the two horns are 
located at the ends of two inlinitely long tails, as if to 
be blown only by the omnipotent gods. The peculiar 
shape was lirst discussed in depth in the 1868 paper 
"Essay on an Interpretation of Non Euclidean 
Geometry" by Italian mathematician Eugenio 
Beltrami, famous for his work in geometry and 
physics. To produce the surface, a curve called a 
tractrix is rotated about its asymptote. Whereas an 
ordinary sphere has a property called poSitive 
curvature everywhere on its surface, a pseudosphere 
has a constant negative curvature, which means that 
it can be thought of as maintaining a constant 
concavity over its entire surface (except 
at its central cusp). 



Thus, a sphere is a closed surface with a finite area, while a 

pseudosphere is an open surface with infinite area.  The negative curvature of a pseudosphere 
requires that the angles of a triangle drawn on its surface add up to less than 180°. The 
geometry of the pseudosphere is called hyperbolic, and some astronomers in the past have 
suggested that our entire universe might be described by hyperbolic geometry with properties 
of a pseudosphere. The pseudosphere is of historical importance because it was one of the lirst 
models for a Non-Euclidean space. 
 
 
94. Weierstrass Function (1872) 
 

                                                    
 
His function, which was continuous everywhere but differentiable (possessing a derivative) 
nowhere, was defined by f(x) = ∑ak cos(bkπx) , where the sum is from k = 0 to ∞. Here, a is a 
real number with 0 < a < 1, b is an odd positive integer, and ab > (1+3π/2).. The summation 
symbol indicates that the function is constructed from an infinite number of trigonometric 
functions to produce a densely nested oscillating structure. Mathematicians were well aware 
that functions might not be differentiable at a few troublesome points, such as the bottom of 
the inverted wedge shape specified by f(x) = │x│which has no derivative at x = O. However, 
after Weierstrass's demonstration of a nowhere-differentiable curve, mathematicians were in a 
quandary. 
In 1875, Paul du Bois-Reymond published the Weierstrass function, making it the 
first published function of its kind. Other mathematicians, such as Czech mathematician 
Bernard Bolzano and German mathematician Bernhard Riemann, had worked on similar 
(unpublished) constructions in 1830 and 1861, respectively. Another example of an 
everywhere-continuous but nowhere-differentiable curve is the fractal Koch curve. 
 
 
 

 

 

In the early 1800s, mathematicians often thought 
of a continuous function f(x) as 
having a derivative (a unique tangent line) that 
could be specified along most points in the curve. 
In 1872, German mathematician Karl Weierstrass 
stunned mathematical colleagues at the Berlin 
Academy by proving this thinking to be false. 



95. Fifteen Puzzle (1874) 

 

 

96.Cantor’s Transfinite Number (1874) 

  
 
 
 

                                                                              
                                                                                                      
 
 

A sliding tile puzzle invented by Sam Loyd that 
became worldwide obsession. Fifteen little tiles 
,numbered 1 to 15,were placed in 4×4 frame in 
serial order except for tile 14 & 15;which were 
swapped around; the lower right hand square 
was left empty. The object of puzzle was to get 
all the tiles in correct order; the only allowed 
moves were sliding counters into the empty 
square. 

The game even made its way into the solemn 
House halls of German Parliament. 

 

Georg Cantor was born in St. Petersburg in 1845 but lived in 
Germany for most of his life, teaching at the University of 
Halle. He spent much of his life dealing with the science of 
infinite-both the infinitely small and infinitely large. 

Thinking infinity poses a great challenge for the most of us, 
because we are accustomed to thinking only about finite 
sets. Cantor realized that properties that apply to infinite 
sets may differ greatly from those that apply to finite 
numbers. He discovered that the “infinite class” is 
characterized by the property that the Whole may not be 
greater than the any of its parts. e.g.:- He showed that total 
no. of integers, even and odd, is same as the no. of even 
integers, using a pairing like as shown in figure. 

He described such infinite sets of no. as “Countable,” or 
denumerably infinite.He assigned a no. to represent the 
cardinality of set of all integers. This no. was the first so 
called transfinite number, used to denote the cardinality of 
countable infinite sets of numbers. 

 

 

 

 



97. Reuleaux Triangle (1875) 

 

 

           

                
 
 
 
 
 
 
 
98. Venn Diagram (1880) 

                                                                                              

A Reuleaux Triangle is the shape enclosed by three 60® 
arc around an equilateral triangle, where each arc is 
drawn radically from one of the vertices. This region has 
a constant width equal to the side of triangle and so can 
roll along a road or inside a square. The square Hole code 
in the electronic supplement generates an animation of 
Reuleaux polygon inside a square. The Reuleaux triangle 
has the smallest area for a given width of any curve of 
constant width. Quote from Paul Anderson’s Fiction –“Three 
Cornered Wheel . 

"Draw an equilateral triangle, ABC. Put the point of your 
compasses on A and draw the arc BC. Move to B and 
describe AC, then to C and describe AB. Round off the 
corners. The resulting figure has constant width. It will 
roll between two parallel lines tangent to it maintaining 
that tangency for the whole revolution. As a matter of 
fact, the class of constant-width polygons is infinite. The 
circle is merely a limiting case." 

 The term derives from Franz Reuleaux, a 19th-century 
German engineer who did pioneering work on ways that 
machines translate one type of motion into another, 
although the concept was known before his time. 

 

 

 In 1880 John Venn(1834–1923) introduced Venn 
diagram  in a paper entitled On the Diagrammatic and 
Mechanical Representation of Propositions and 
Reasoning’s  in the "Philosophical Magazine and 
Journal of Science", about the different ways to 
represent propositions by diagrams. 

Venn himself did not use the term "Venn diagram" and 
referred to his invention as "Eulerian Circles." 

http://en.wikipedia.org/wiki/Franz_Reuleaux


For example, in the opening sentence of his 1880 article Venn writes, "Schemes of 
diagrammatic representation have been so familiarly introduced into logical treatises during 
the last century or so, that many readers, even those who have made no professional study of 
logic, may be supposed to be acquainted with the general nature and object of such devices. 

 The first to use the term "Venn diagram" was Clarence Irving Lewis in 1918, in his book "A 
Survey of Symbolic Logic". 

Venn diagrams are very similar to Euler Diagrams, which were invented by Leonhard 
Euler (1708–1783) in the 18th century. M. E. Baron has noted that Leibniz (1646–1716) in the 
17th century produced similar diagrams before Euler, but much of it was unpublished. She also 
observes even earlier Euler-like diagrams by Ramon Lull in the 13th Century.  

 

99. Klein Bottle (1882) 

 

 

 

 

 

 

 

 

 

 

The Klein bottle is an object in which the flexible neck of a 
bottle wraps into the bottle to form a shape with no inside an 
outside. Further, it is an example of a non-oriented surface or 
in two dimensional manifolds the notion of left and right 
cannot be consistently defined.  

The Klein bottle was first described in 1882 by the German 
mathematician Felix Klein(1849-1925).Because of the peculiar 
properties of the klein bottle, mathematicians and puzzle 
enthusiasts study chess games and mazes played on klein 
bottle surfaces. If a map were drawn on a klein bottle, six 
different colors would be needed to ensure that no bordering 
areas would be colored the same.  

 

 



100. Tower Of Hanoi (1883) 

                                                                                          

  

1. Only one disk may be moved at a time. 
2. Each move consists of taking the upper disk from one of the stacks and placing it on top 

of another stack. 
3. No disk may be placed on top of a smaller disk. 

With three disks, the puzzle can be solved in seven moves. The minimum number of moves 
required to solve a Tower of Hanoi puzzle is 2n - 1, where n is the number of disks. 

 

There is a mythical story about an Indian temple in Kashi Vishwanath which contains a large room with 
three time-worn posts in it surrounded by 64 golden disks. Brahmin priests, acting out the command of an 
ancient prophecy, have been moving these disks, in accordance with the immutable rules of the Brahma, 
since that time. The puzzle is therefore also known as the Tower of Brahma puzzle. According to the 
legend, when the last move of the puzzle will be completed, the world will end. 

If the legend were true, and if the priests were able to move disks at a rate of one per second, using the 
smallest number of moves, it would take them 264−1 seconds or roughly 585 billion year or 
18,446,744,073,709,551,615 turns to finish, or about 127 times the current age of the sun. 

There are many variations on this legend. For instance, in some telling, the temple is a monastery and the 
priests are monks. The temple or monastery may be said to be in different parts of the world — including 
Hanoi, Vietnam, and may be associated with any religion.  In some versions, other elements are 
introduced, such as the fact that the tower was created at the beginning of the world, or that the priests or 
monks may make only one move per day. 

 
  

 
 
 

The Tower of Hanoi was invented by French 
Mathematician Edouard Lucas in 1883 and sold as 
a toy. This mathematical puzzle consists of several 
disks of different sizes that slide onto any of three 
pegs. 

The objective of the puzzle is to move the entire 
stack to another rod, obeying the following simple 
rules: 
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